Search results
Results from the WOW.Com Content Network
For example, if any number of elements are out of place by only one position (e.g. 0123546789 and 1032547698), bubble sort's exchange will get them in order on the first pass, the second pass will find all elements in order, so the sort will take only 2n time.
The first algorithm of this type was Fredman and Willard's fusion tree sorting algorithm, which runs in time O(n log n / log log n); this is an improvement over comparison sorting for any choice of K and w. An alternative version of their algorithm that includes the use of random numbers and integer division operations improves this to O(n √ ...
For example, the best case for a simple linear search on a list occurs when the desired element is the first element of the list. Development and choice of algorithms is rarely based on best-case performance: most academic and commercial enterprises are more interested in improving average-case complexity and worst-case performance. Algorithms ...
In computer science, smoothsort is a comparison-based sorting algorithm.A variant of heapsort, it was invented and published by Edsger Dijkstra in 1981. [1] Like heapsort, smoothsort is an in-place algorithm with an upper bound of O(n log n) operations (see big O notation), [2] but it is not a stable sort.
In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to ...
Bubble sort is asymptotically equivalent in running time to insertion sort in the worst case, but the two algorithms differ greatly in the number of swaps necessary. Experimental results such as those of Astrachan have also shown that insertion sort performs considerably better even on random lists.
Quicksort is an efficient, general-purpose sorting algorithm. Quicksort was developed by British computer scientist Tony Hoare in 1959 [1] and published in 1961. [2] It is still a commonly used algorithm for sorting. Overall, it is slightly faster than merge sort and heapsort for randomized data, particularly on larger distributions. [3]
When the array contains only duplicates of a relatively small number of items, a constant-time perfect hash function can greatly speed up finding where to put an item 1, turning the sort from Θ(n 2) time to Θ(n + k) time, where k is the total number of hashes. The array ends up sorted in the order of the hashes, so choosing a hash function ...