enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    In the view of Jaynes (1957), [20] thermodynamic entropy, as explained by statistical mechanics, should be seen as an application of Shannon's information theory: the thermodynamic entropy is interpreted as being proportional to the amount of further Shannon information needed to define the detailed microscopic state of the system, that remains ...

  3. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    The BSC has a capacity of 1 − H b (p) bits per channel use, where H b is the binary entropy function to the base-2 logarithm: A binary erasure channel (BEC) with erasure probability p is a binary input, ternary output channel. The possible channel outputs are 0, 1, and a third symbol 'e' called an erasure.

  4. Introduction to entropy - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_entropy

    The concept of thermodynamic entropy arises from the second law of thermodynamics.This law of entropy increase quantifies the reduction in the capacity of an isolated compound thermodynamic system to do thermodynamic work on its surroundings, or indicates whether a thermodynamic process may occur.

  5. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    In more detail, Clausius explained his choice of "entropy" as a name as follows: [11] I prefer going to the ancient languages for the names of important scientific quantities, so that they may mean the same thing in all living tongues. I propose, therefore, to call S the entropy of a body, after the Greek

  6. Entropy (order and disorder) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(order_and_disorder)

    Thus, if entropy is associated with disorder and if the entropy of the universe is headed towards maximal entropy, then many are often puzzled as to the nature of the "ordering" process and operation of evolution in relation to Clausius' most famous version of the second law, which states that the universe is headed towards maximal "disorder".

  7. Entropy (statistical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(statistical...

    However, after sufficient time has passed, the system reaches a uniform color, a state much easier to describe and explain. Boltzmann formulated a simple relationship between entropy and the number of possible microstates of a system, which is denoted by the symbol Ω. The entropy S is proportional to the natural logarithm of this number:

  8. Conditional entropy - Wikipedia

    en.wikipedia.org/wiki/Conditional_entropy

    In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons , nats , or hartleys .

  9. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...