enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    Even more generally, it holds that a general solution to the Schrödinger equation can be found by taking a weighted sum over a basis of states. A choice often employed is the basis of energy eigenstates, which are solutions of the time-independent Schrödinger equation.

  3. List of quantum-mechanical systems with analytical solutions

    en.wikipedia.org/wiki/List_of_quantum-mechanical...

    which is an eigenvalue equation. Very often, only numerical solutions to the Schrödinger equation can be found for a given physical system and its associated potential energy. However, there exists a subset of physical systems for which the form of the eigenfunctions and their associated energies, or eigenvalues, can be found.

  4. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Defining equation SI unit Dimension Wavefunction: ψ, Ψ To solve from the Schrödinger equation: varies with situation and number of particles Wavefunction probability density: ρ = | | = m −3 [L] −3: Wavefunction probability current: j: Non-relativistic, no external field:

  5. Schrödinger–Newton equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger–Newton_equation

    The Schrödinger–Newton equation, sometimes referred to as the Newton–Schrödinger or Schrödinger–Poisson equation, is a nonlinear modification of the Schrödinger equation with a Newtonian gravitational potential, where the gravitational potential emerges from the treatment of the wave function as a mass density, including a term that represents interaction of a particle with its own ...

  6. Unitary transformation (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Unitary_transformation...

    In quantum mechanics, the Schrödinger equation describes how a system changes with time. It does this by relating changes in the state of the system to the energy in the system (given by an operator called the Hamiltonian). Therefore, once the Hamiltonian is known, the time dynamics are in principle known.

  7. Since the time separation is infinitesimal and the cancelling oscillations become severe for large values of ẋ, the path integral has most weight for y close to x. In this case, to lowest order the potential energy is constant, and only the kinetic energy contribution is nontrivial.

  8. Molecular Hamiltonian - Wikipedia

    en.wikipedia.org/wiki/Molecular_Hamiltonian

    The main effort in this approximate solution of the nuclear motion Schrödinger equation is the computation of the Hessian F of V and its diagonalization. This approximation to the nuclear motion problem, described in 3 N mass-weighted Cartesian coordinates, became standard in quantum chemistry , since the days (1980s-1990s) that algorithms for ...

  9. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    One particular solution to the time-independent Schrödinger equation is = /, a plane wave, which can be used in the description of a particle with momentum exactly p, since it is an eigenfunction of the momentum operator. These functions are not normalizable to unity (they are not square-integrable), so they are not really elements of physical ...