enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Diagonally dominant matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonally_dominant_matrix

    A strictly diagonally dominant matrix (or an irreducibly diagonally dominant matrix [2]) is non-singular. A Hermitian diagonally dominant matrix with real non-negative diagonal entries is positive semidefinite. This follows from the eigenvalues being real, and Gershgorin's circle theorem. If the symmetry requirement is eliminated, such a matrix ...

  3. Weakly chained diagonally dominant matrix - Wikipedia

    en.wikipedia.org/wiki/Weakly_chained_diagonally...

    A complex square matrix is said to be weakly chained diagonally dominant (WCDD) if A {\displaystyle A} is WDD and for each row i 1 {\displaystyle i_{1}} that is not SDD, there exists a walk i 1 → i 2 → ⋯ → i k {\displaystyle i_{1}\rightarrow i_{2}\rightarrow \cdots \rightarrow i_{k}} in the directed graph of A {\displaystyle A} ending ...

  4. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    The binary matrix with ones on the anti-diagonal, and zeroes everywhere else. a ij = δ n+1−i,j: A permutation matrix. Hilbert matrix: a ij = (i + j − 1) −1. A Hankel matrix. Identity matrix: A square diagonal matrix, with all entries on the main diagonal equal to 1, and the rest 0. a ij = δ ij: Lehmer matrix: a ij = min(i, j) ÷ max(i, j).

  5. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges.

  6. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Hilbert matrixexample of a matrix which is extremely ill-conditioned (and thus difficult to handle) Wilkinson matrixexample of a symmetric tridiagonal matrix with pairs of nearly, but not exactly, equal eigenvalues; Convergent matrix — square matrix whose successive powers approach the zero matrix; Algorithms for matrix multiplication:

  7. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    The adjugate of a diagonal matrix is again diagonal. Where all matrices are square, A matrix is diagonal if and only if it is triangular and normal. A matrix is diagonal if and only if it is both upper-and lower-triangular. A diagonal matrix is symmetric. The identity matrix I n and zero matrix are diagonal. A 1×1 matrix is always diagonal.

  8. Gershgorin circle theorem - Wikipedia

    en.wikipedia.org/wiki/Gershgorin_circle_theorem

    The eigenvalues are -10.870, 1.906, 10.046, 7.918. Note that this is a (column) diagonally dominant matrix: | | > | |. This means that most of the matrix is in the diagonal, which explains why the eigenvalues are so close to the centers of the circles, and the estimates are very good.

  9. Diagonalizable matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonalizable_matrix

    Since the set F is both a set of eigenvectors for matrix A and it spans some arbitrary vector space, then we say that there exists a matrix which is a diagonal matrix that is similar to . In other words, A E {\displaystyle A_{E}} is a diagonalizable matrix if the matrix is written in the basis F.