enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bernoulli distribution - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_distribution

    The categorical distribution is the generalization of the Bernoulli distribution for variables with any constant number of discrete values. The Beta distribution is the conjugate prior of the Bernoulli distribution. [5] The geometric distribution models the number of independent and identical Bernoulli trials needed to get one success.

  3. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Ewens's sampling formula is a probability distribution on the set of all partitions of an integer n, arising in population genetics. The Balding–Nichols model; The multinomial distribution, a generalization of the binomial distribution. The multivariate normal distribution, a generalization of the normal distribution.

  4. Categorical distribution - Wikipedia

    en.wikipedia.org/wiki/Categorical_distribution

    A categorical distribution is a discrete probability distribution whose sample space is the set of k individually identified items. It is the generalization of the Bernoulli distribution for a categorical random variable. In one formulation of the distribution, the sample space is taken to be a finite sequence of integers.

  5. Continuous Bernoulli distribution - Wikipedia

    en.wikipedia.org/wiki/Continuous_Bernoulli...

    In probability theory, statistics, and machine learning, the continuous Bernoulli distribution [1] [2] [3] is a family of continuous probability distributions parameterized by a single shape parameter (,), defined on the unit interval [,], by:

  6. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    A single success/failure experiment is also called a Bernoulli trial or Bernoulli experiment, and a sequence of outcomes is called a Bernoulli process; for a single trial, i.e., n = 1, the binomial distribution is a Bernoulli distribution. The binomial distribution is the basis for the binomial test of statistical significance. [1]

  7. Bernoulli process - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_process

    The component Bernoulli variables X i are identically distributed and independent. Prosaically, a Bernoulli process is a repeated coin flipping, possibly with an unfair coin (but with consistent unfairness). Every variable X i in the sequence is associated with a Bernoulli trial or experiment. They all have the same Bernoulli distribution.

  8. Multinomial distribution - Wikipedia

    en.wikipedia.org/wiki/Multinomial_distribution

    The Bernoulli distribution models the outcome of a single Bernoulli trial. In other words, it models whether flipping a (possibly biased) coin one time will result in either a success (obtaining a head) or failure (obtaining a tail).

  9. Bernoulli trial - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_trial

    It is named after Jacob Bernoulli, a 17th-century Swiss mathematician, who analyzed them in his Ars Conjectandi (1713). [2] The mathematical formalization and advanced formulation of the Bernoulli trial is known as the Bernoulli process. Since a Bernoulli trial has only two possible outcomes, it can be framed as a "yes or no" question. For example: