Search results
Results from the WOW.Com Content Network
In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.
y = x 3 for values of 1 ≤ x ≤ 25. In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number n is denoted n 3, using a superscript 3, [a] for example 2 3 = 8. The cube operation can also be defined for any other mathematical expression, for ...
Power of Three may refer to: Power of three, a number of the form 3 n; Third power, a number of the form n 3; Power of Three, a novel by Diana Wynne Jones; Power of Three (Fatso Jetson album) Power of Three (Michel Petrucciani album) Power of Three "The Power of Three" "The Power of Three", an episode of Teenage Mutant Ninja Turtles
The term superexponentiation was published by Bromer in his paper Superexponentiation in 1987. [3] It was used earlier by Ed Nelson in his book Predicative Arithmetic, Princeton University Press, 1986. The term hyperpower [4] is a natural combination of hyper and power, which aptly describes tetration.
In mathematics, Knuth's up-arrow notation is a method of notation for very large integers, introduced by Donald Knuth in 1976. [1]In his 1947 paper, [2] R. L. Goodstein introduced the specific sequence of operations that are now called hyperoperations.
In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. The exponential of a variable x {\displaystyle x} is denoted exp x {\displaystyle \exp x} or e x {\displaystyle e^{x}} , with the two notations used interchangeably.
In mathematics, a prime power is a positive integer which is a positive integer power of a single prime number. For example: 7 = 7 1, 9 = 3 2 and 64 = 2 6 are prime powers, while 6 = 2 × 3, 12 = 2 2 × 3 and 36 = 6 2 = 2 2 × 3 2 are not. The sequence of prime powers begins:
According to Guy, Erdős has asked whether there are infinitely many pairs of consecutive powerful numbers such as (23 3, 2 3 3 2 13 2) in which neither number in the pair is a square. Walker (1976) showed that there are indeed infinitely many such pairs by showing that 3 3 c 2 + 1 = 7 3 d 2 has infinitely many solutions.