Search results
Results from the WOW.Com Content Network
Swarm Intelligence-based techniques can be used in a number of applications. The U.S. military is investigating swarm techniques for controlling unmanned vehicles. The European Space Agency is thinking about an orbital swarm for self-assembly and interferometry. NASA is investigating the use of swarm technology for planetary mapping.
A swarm intelligence method. Intelligent water drops (IWD) A swarm-based optimization algorithm based on natural water drops flowing in rivers Gravitational search algorithm (GSA) A swarm intelligence method. Ant colony clustering method (ACCM) A method that make use of clustering approach, extending the ACO. Stochastic diffusion search (SDS)
The design of swarm robotics systems is guided by swarm intelligence principles, which promote fault tolerance, scalability, and flexibility. [1] Unlike distributed robotic systems in general, swarm robotics emphasizes a large number of robots. While various formulations of swarm intelligence principles exist, one widely recognized set includes:
In the first work on DFO, this algorithm was compared against a few other existing swarm intelligence techniques using error, efficiency and diversity measures. It is shown that despite the simplicity of the algorithm, which only uses agents’ position vectors at time t to generate the position vectors for time t + 1, it exhibits a competitive ...
In the ABC algorithm, the first half of the swarm consists of employed bees, and the second half constitutes the onlooker bees. The number of employed bees or the onlooker bees is equal to the number of solutions in the swarm. The ABC generates a randomly distributed initial population of SN solutions (food sources), where SN denotes the swarm ...
A population (swarm) of candidate solutions (particles) moves in the search space, and the movement of the particles is influenced both by their own best known position and swarm's global best known position. Like genetic algorithms, the PSO method depends on information sharing among population members.
A particle swarm searching for the global minimum of a function. In computational science, particle swarm optimization (PSO) [1] is a computational method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality.
In pseudocode the algorithm can be stated as: Begin 1) Objective function: (), = (,,...,); 2) Generate an initial population of fireflies (=,, …,);. 3) Formulate light intensity I so that it is associated with () (for example, for maximization problems, () or simply = ();) 4) Define absorption coefficient γ while (t < MaxGeneration) for i = 1 : n (all n fireflies) for j = 1 : i (n fireflies ...