Search results
Results from the WOW.Com Content Network
Electromagnetic radiation is commonly referred to as "light", EM, EMR, or electromagnetic waves. [2] The position of an electromagnetic wave within the electromagnetic spectrum can be characterized by either its frequency of oscillation or its wavelength. Electromagnetic waves of different frequency are called by different names since they have ...
In physics, a mechanical wave is a wave that is an oscillation of matter, and therefore transfers energy through a material medium. [1] (Vacuum is, from classical perspective, a non-material medium, where electromagnetic waves propagate.) While waves can move over long distances, the movement of the medium of transmission—the material—is ...
Other examples of mechanical waves are seismic waves, gravity waves, surface waves and string vibrations. In an electromagnetic wave (such as light), coupling between the electric and magnetic fields sustains propagation of waves involving these fields according to Maxwell's equations .
These waves propagate at the speed of light and have varying electric and magnetic fields which are orthogonal to one another, and also to the direction of propagation of the waves. [49] Light waves are now generally treated as electromagnetic waves except when quantum mechanical effects have to be considered.
"Longitudinal waves" and "transverse waves" have been abbreviated by some authors as "L-waves" and "T-waves", respectively, for their own convenience. [1] While these two abbreviations have specific meanings in seismology (L-wave for Love wave [2] or long wave [3]) and electrocardiography (see T wave), some authors chose to use "ℓ-waves" (lowercase 'L') and "t-waves" instead, although they ...
A diagram of the electromagnetic spectrum, showing various properties across the range of frequencies and wavelengths. The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band.
The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.
An electromagnetic wave, in contrast, must have a transverse component, but may also be partially longitudinal. Waves can be further classified by the oscillating species. In most plasmas of interest, the electron temperature is comparable to or larger than the ion temperature. This fact, coupled with the much smaller mass of the electron ...