Search results
Results from the WOW.Com Content Network
The higher-order derivatives are less common than the first three; [1] [2] thus their names are not as standardized, though the concept of a minimum snap trajectory has been used in robotics and is implemented in MATLAB. [3] The fourth derivative is referred to as snap, leading the fifth and sixth derivatives to be "sometimes somewhat ...
The following procedure can be used to easily test if any source code is derivative code or not. Delete the code in question; Build (or compile) the project; If the build process simply replaces the source code which has been deleted, it is (obviously) code which has been derived from something else and is therefore, by definition, derivative code.
The classical Pade scheme for the first derivative at a cell with index (′) reads; ′ + ′ + + ′ = +. Where is the spacing between points with index , & +.The equation yields a fourth-order accurate solution for ′ when supplemented with suitable boundary conditions (typically periodic).
The source code for a function is replaced by an automatically generated source code that includes statements for calculating the derivatives interleaved with the original instructions. Source code transformation can be implemented for all programming languages, and it is also easier for the compiler to do compile time optimizations.
Name Dim Equation Applications Landau–Lifshitz model: 1+n = + Magnetic field in solids Lin–Tsien equation: 1+2 + = Liouville equation: any + = Liouville–Bratu–Gelfand equation
For example, the second-order equation y′′ = −y can be rewritten as two first-order equations: y′ = z and z′ = −y. In this section, we describe numerical methods for IVPs, and remark that boundary value problems (BVPs) require a different set of tools.
Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...
The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances.