Search results
Results from the WOW.Com Content Network
≠ (not-equal sign) Denotes inequality and means "not equal". ≈ The most common symbol for denoting approximate equality. For example, ~ 1. Between two numbers, either it is used instead of ≈ to mean "approximatively equal", or it means "has the same order of magnitude as". 2.
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.
To be precise, what is sought are often not necessarily actual values, but, more in general, expressions. A solution of the inequation is an assignment of expressions to the unknowns that satisfies the inequation(s); in other words, expressions such that, when they are substituted for the unknowns, make the inequations true propositions.
The relation not greater than can also be represented by , the symbol for "greater than" bisected by a slash, "not". The same is true for not less than, . The notation a ≠ b means that a is not equal to b; this inequation sometimes is considered a form of strict inequality. [4]
The term 'expression' is part of the language of mathematics, that is to say, it is not defined within mathematics, but taken as a primitive part of the language. To attempt to define the term would not be doing mathematics, but rather, one would be engaging in a kind of metamathematics (the metalanguage of mathematics), usually mathematical logic.
The closely related code point U+2262 ≢ NOT IDENTICAL TO (≢, ≢) is the same symbol with a slash through it, indicating the negation of its mathematical meaning. [ 1 ] In LaTeX mathematical formulas, the code \equiv produces the triple bar symbol and \not\equiv produces the negated triple bar symbol ≢ {\displaystyle \not ...
In applied fields the word "tight" is often used with the same meaning. [2] smooth Smoothness is a concept which mathematics has endowed with many meanings, from simple differentiability to infinite differentiability to analyticity, and still others which are more complicated. Each such usage attempts to invoke the physically intuitive notion ...
This following list features abbreviated names of mathematical functions, function-like operators and other mathematical terminology. This list is limited to abbreviations of two or more letters (excluding number sets).