Search results
Results from the WOW.Com Content Network
The stomatal pores are largest when water is freely available and the guard cells become turgid, and closed when water availability is critically low and the guard cells become flaccid. Photosynthesis depends on the diffusion of carbon dioxide (CO 2) from the air through the stomata into the mesophyll tissues.
Stoma in a tomato leaf shown via colorized scanning electron microscope image A stoma in horizontal cross section The underside of a leaf. In this species (Tradescantia zebrina) the guard cells of the stomata are green because they contain chlorophyll while the epidermal cells are chlorophyll-free and contain red pigments.
C 2 photosynthesis (also called glycine shuttle and photorespiratory CO 2 pump) is a CCM that works by making use of – as opposed to avoiding – photorespiration. It performs carbon refixation by delaying the breakdown of photorespired glycine, so that the molecule is shuttled from the mesophyll into the bundle sheath .
A germination rate experiment. Plant physiology is a subdiscipline of botany concerned with the functioning, or physiology, of plants. [1]Plant physiologists study fundamental processes of plants, such as photosynthesis, respiration, plant nutrition, plant hormone functions, tropisms, nastic movements, photoperiodism, photomorphogenesis, circadian rhythms, environmental stress physiology, seed ...
Stomatal conductance, usually measured in mmol m −2 s −1 by a porometer, estimates the rate of gas exchange (i.e., carbon dioxide uptake) and transpiration (i.e., water loss as water vapor) through the leaf stomata as determined by the degree of stomatal aperture (and therefore the physical resistances to the movement of gases between the air and the interior of the leaf).
The light-harvesting complex (or antenna complex; LH or LHC) is an array of protein and chlorophyll molecules embedded in the thylakoid membrane of plants and cyanobacteria, which transfer light energy to one chlorophyll a molecule at the reaction center of a photosystem.
Since photosynthesis, transpiration and stomatal conductance are an integral part of basic plant physiology, estimates of these parameters can be used to investigate numerous aspects of plant biology. The plant-scientific community has generally accepted photosynthetic systems as reliable and accurate tools to assist research.
The rate of transpiration is controlled by the stomatal aperture, and these small pores open especially for photosynthesis. While there are exceptions to this (such as night or CAM photosynthesis), in general, a light supply will encourage open stomata. Temperature: Temperature affects the rate in two ways: