Search results
Results from the WOW.Com Content Network
A similarity (also called a similarity transformation or similitude) of a Euclidean space is a bijection f from the space onto itself that multiplies all distances by the same positive real number r, so that for any two points x and y we have ((), ()) = (,), where d(x,y) is the Euclidean distance from x to y. [16]
Similarity is an equivalence relation on the space of square matrices. Because matrices are similar if and only if they represent the same linear operator with respect to (possibly) different bases, similar matrices share all properties of their shared underlying operator: Rank; Characteristic polynomial, and attributes that can be derived from it:
Matrix congruence is an equivalence relation. Matrix congruence arises when considering the effect of change of basis on the Gram matrix attached to a bilinear form or quadratic form on a finite-dimensional vector space: two matrices are congruent if and only if they represent the same bilinear form with respect to different bases.
The congruence coefficient can also be defined as the cosine of the angle between factor axes based on the same set of variables (e.g., tests) obtained for two samples (see Cosine similarity). For example, with perfect congruence the angle between the factor axes is 0 degrees, and the cosine of 0 is 1. [2]
The congruence theorems side-angle-side (SAS) and side-side-side (SSS) also hold on a sphere; in addition, if two spherical triangles have an identical angle-angle-angle (AAA) sequence, they are congruent (unlike for plane triangles). [9] The plane-triangle congruence theorem angle-angle-side (AAS) does not hold for spherical triangles. [10]
A congruence relation is an equivalence relation whose domain is also the underlying set for an algebraic structure, and which respects the additional structure. In general, congruence relations play the role of kernels of homomorphisms, and the quotient of a structure by a congruence relation can be formed.
Similarity transformation may refer to: Similarity (geometry) , for shape-preserving transformations Matrix similarity , for matrix transformations of the form A → P −1 AP
The lattice Con(A) of all congruence relations on an algebra A is algebraic. John M. Howie described how semigroup theory illustrates congruence relations in universal algebra: In a group a congruence is determined if we know a single congruence class, in particular if we know the normal subgroup which is the class containing the identity.