Search results
Results from the WOW.Com Content Network
A newton is defined as 1 kg⋅m/s 2 (it is a named derived unit defined in terms of the SI base units). [1]: 137 One newton is, therefore, the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force.
newton meter squared per kilogram squared (N⋅m 2 /kg 2) shear modulus: pascal (Pa) or newton per square meter (N/m 2) acceleration due to gravity: meters per second squared (m/s 2), or equivalently, newtons per kilogram (N/kg) magnetic field strength: ampere per meter (A/m) Hamiltonian: joule (J)
[citation needed] The kilogram-force is equal to the magnitude of the force exerted on one kilogram of mass in a 9.806 65 m/s 2 gravitational field (standard gravity, a conventional value approximating the average magnitude of gravity on Earth). [2] That is, it is the weight of a kilogram under standard gravity. One kilogram-force is defined as ...
The SI has special names for 22 of these coherent derived units (for example, hertz, the SI unit of measurement of frequency), but the rest merely reflect their derivation: for example, the square metre (m 2), the SI derived unit of area; and the kilogram per cubic metre (kg/m 3 or kg⋅m −3), the SI derived unit of density.
Transfer of momentum per unit time newton (N = kg⋅m⋅s −2) L M T −2: extensive, vector Impulse: J: Transferred momentum newton-second (N⋅s = kg⋅m/s) L M T −1: vector Jerk: j →: Change of acceleration per unit time: the third time derivative of position m/s 3: L T −3: vector Jounce (or snap) s →
kilogram per cubic metre: kg/m 3: density: ρ: kilogram per square metre kg/m 2: surface density: ρ A: cubic metre per kilogram m 3 /kg: specific volume: v: ampere per square metre A/m 2: current density: j: ampere per metre: A/m: magnetic field strength: H: mole per cubic metre mol/m 3: concentration: c: kilogram per cubic metre: kg/m 3: mass ...
This includes Newton's law of universal gravitation, and the relation between gravitational potential and field acceleration. d 2 R / dt 2 and F / m are both equal to the gravitational acceleration g (equivalent to the inertial acceleration, so same mathematical form, but also defined as gravitational force per unit mass [8 ...
Under Sir Isaac Newton's 337-year-old laws of motion and an important formula that sprang from his work, F = ma, an object with a mass, m, of one kilogram accelerates, a, at one meter per second per second (about one-tenth the acceleration due to Earth's gravity) [4] when acted upon by a force, F, of one newton.