Search results
Results from the WOW.Com Content Network
The Gudermannian function gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers. The graph of the function a cosh( x / a ) is the catenary , the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.
The hyperbolic secant distribution shares many properties with the standard normal distribution: it is symmetric with unit variance and zero mean, median and mode, and its probability density function is proportional to its characteristic function.
Help; Learn to edit; Community portal; Recent changes; Upload file; Special pages
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
The Gudermannian function reveals a close relationship between the circular functions and hyperbolic functions. It was introduced in the 1760s by Johann Heinrich Lambert , and later named for Christoph Gudermann who also described the relationship between circular and hyperbolic functions in 1830. [ 2 ]
In mathematics, the definite integral ()is the area of the region in the xy-plane bounded by the graph of f, the x-axis, and the lines x = a and x = b, such that area above the x-axis adds to the total, and that below the x-axis subtracts from the total.
The principal value of the multifunction is chosen at a particular point and values elsewhere in the domain of definition are defined to agree with those found by analytic continuation. For example, for the square root, the principal value is defined as the square root that has a positive real part. This defines a single valued analytic ...
The forms below normally assume the Cauchy principal value around a singularity in the value of C but this is in general, not necessary. For instance in = | | + there is a singularity at 0 and the antiderivative becomes infinite there. If the integral above were to be used to compute a definite integral between −1 and 1, one would get the ...