enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cycle detection - Wikipedia

    en.wikipedia.org/wiki/Cycle_detection

    In computer science, cycle detection or cycle finding is the algorithmic problem of finding a cycle in a sequence of iterated function values. For any function f that maps a finite set S to itself, and any initial value x 0 in S , the sequence of iterated function values

  3. Cycle (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Cycle_(graph_theory)

    A graph with edges colored to illustrate a closed walk, H–A–B–A–H, in green; a circuit which is a closed walk in which all edges are distinct, B–D–E–F–D–C–B, in blue; and a cycle which is a closed walk in which all vertices are distinct, H–D–G–H, in red.

  4. Rocha–Thatte cycle detection algorithm - Wikipedia

    en.wikipedia.org/wiki/Rocha–Thatte_cycle...

    The Rocha–Thatte algorithm is a general algorithm for detecting cycles in a directed graph by message passing among its vertices, based on the bulk synchronous message passing abstraction. This is a vertex-centric approach in which the vertices of the graph work together for detecting cycles.

  5. Zero-weight cycle problem - Wikipedia

    en.wikipedia.org/wiki/Zero-weight_cycle_problem

    Therefore, the special case of the zero-weight cycle problem, on graphs with no negative cycle, has a polynomial-time algorithm. [1] In contrast, for graphs that contain negative cycles, detecting a simple cycle of weight exactly 0 is an NP-complete problem. [1] This is true even when the weights are integers of polynomial magnitude.

  6. Bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Bipartite_graph

    A graph with an odd cycle transversal of size 2: removing the two blue bottom vertices leaves a bipartite graph. Odd cycle transversal is an NP-complete algorithmic problem that asks, given a graph G = (V,E) and a number k, whether there exists a set of k vertices whose removal from G would cause the resulting graph to be bipartite. [31]

  7. Strongly connected component - Wikipedia

    en.wikipedia.org/wiki/Strongly_connected_component

    A directed graph is strongly connected if and only if it has an ear decomposition, a partition of the edges into a sequence of directed paths and cycles such that the first subgraph in the sequence is a cycle, and each subsequent subgraph is either a cycle sharing one vertex with previous subgraphs, or a path sharing its two endpoints with ...

  8. Clique problem - Wikipedia

    en.wikipedia.org/wiki/Clique_problem

    A simple decision tree to detect the presence of a 3-clique in a 4-vertex graph. It uses up to 6 questions of the form "Does the red edge exist?", matching the optimal bound n(n − 1)/2. The (deterministic) decision tree complexity of determining a graph property is the number of questions of the form "Is there an edge between vertex u and ...

  9. Bellman–Ford algorithm - Wikipedia

    en.wikipedia.org/wiki/Bellman–Ford_algorithm

    If a graph contains a "negative cycle" (i.e. a cycle whose edges sum to a negative value) that is reachable from the source, then there is no cheapest path: any path that has a point on the negative cycle can be made cheaper by one more walk around the negative cycle. In such a case, the Bellman–Ford algorithm can detect and report the ...