Search results
Results from the WOW.Com Content Network
Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane.
The values of sine and cosine of 30 and 60 degrees are derived by analysis of the equilateral triangle. In an equilateral triangle, the 3 angles are equal and sum to 180°, therefore each corner angle is 60°. Bisecting one corner, the special right triangle with angles 30-60-90 is obtained.
The magnitude of an object's solid angle in steradians is equal to the area of the segment of a unit sphere, centered at the apex, that the object covers. Giving the area of a segment of a unit sphere in steradians is analogous to giving the length of an arc of a unit circle in radians. Just as the magnitude of a plane angle in radians at the ...
A circle containing one acre is cut by another whose center is on the circumference of the given circle, and the area common to both is one-half acre. Find the radius of the cutting circle. The solutions in both cases are non-trivial but yield to straightforward application of trigonometry, analytical geometry or integral calculus.
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
English: All of the six trigonometric functions of an arbitrary angle θ can be defined geometrically in terms of a unit circle centred at the origin of a Cartesian coordinate plane.
English: Some common angles (multiples of 30 and 45 degrees) and the corresponding sine and cosine values shown on the Unit circle. The angles (θ) are given in degrees and radians, together with the corresponding intersection point on the unit circle, (cos θ, sin θ).
Circle packing in a square is a packing problem in recreational mathematics, where the aim is to pack n unit circles into the smallest possible square. Equivalently, the problem is to arrange n points in a unit square aiming to get the greatest minimal separation, d n , between points. [ 1 ]