enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    v. t. e. The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun.

  3. Ladder paradox - Wikipedia

    en.wikipedia.org/wiki/Ladder_paradox

    Ladder paradox. The ladder paradox (or barn-pole paradox) is a thought experiment in special relativity. It involves a ladder, parallel to the ground, travelling horizontally at relativistic speed (near the speed of light) and therefore undergoing a Lorentz length contraction. The ladder is imagined passing through the open front and rear doors ...

  4. Special relativity - Wikipedia

    en.wikipedia.org/wiki/Special_relativity

    e. In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein 's 1905 paper, On the Electrodynamics of Moving Bodies, the theory is presented as being based on just two postulates: [p 1][1][2] The laws of physics are invariant (identical ...

  5. Bell's spaceship paradox - Wikipedia

    en.wikipedia.org/wiki/Bell's_spaceship_paradox

    Below: In S′ the distance between the spaceships increases, while the string length stays the same. Bell's spaceship paradox is a thought experiment in special relativity. It was first described by E. Dewan and M. Beran in 1959 [1] but became more widely known after John Stewart Bell elaborated the idea further in 1976. [2]

  6. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    hide. In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.

  7. Problems with Einstein's general theory of relativity - Wikipedia

    en.wikipedia.org/wiki/Problems_with_Einstein's...

    If Einstein's system is defined as a combination of (1) the GPoR (by definition), (2) the PoE (for geometricalisation) and (3) SR (for continuity with previous theory). then we cannot very well lose either (1) or (2). This leaves open the possibility of eliminating (3), and losing full support for special relativity.

  8. Relativistic Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Lagrangian...

    The relativistic Lagrangian can be derived in relativistic mechanics to be of the form: = (˙) (, ˙,). Although, unlike non-relativistic mechanics, the relativistic Lagrangian is not expressed as difference of kinetic energy with potential energy, the relativistic Hamiltonian corresponds to total energy in a similar manner but without including rest energy.

  9. Acceleration (special relativity) - Wikipedia

    en.wikipedia.org/wiki/Acceleration_(special...

    Acceleration (special relativity) Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration".