enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    t. e. Power is the amount of energy transferred or converted per unit time. In the International System of Units, the unit of power is the watt, equal to one joule per second. Power is a scalar quantity. Specifying power in particular systems may require attention to other quantities; for example, the power involved in moving a ground vehicle ...

  3. Impulse (physics) - Wikipedia

    en.wikipedia.org/wiki/Impulse_(physics)

    t 1 and t 2 are times when the impulse begins and ends, respectively, m is the mass of the object, v 2 is the final velocity of the object at the end of the time interval, and; v 1 is the initial velocity of the object when the time interval begins. Impulse has the same units and dimensions (MLT −1) as momentum.

  4. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    In science, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force strength and the distance traveled. A force is said to do positive work if it has a component in the ...

  5. Energy - Wikipedia

    en.wikipedia.org/wiki/Energy

    The SI unit of power, defined as energy per unit of time, is the watt, which is a joule per second. Thus, one joule is one watt-second, and 3600 joules equal one watt-hour. The CGS energy unit is the erg and the imperial and US customary unit is the foot pound.

  6. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    The kinetic energy is equal to 1/2 the product of the mass and the square of the speed. In formula form: where is the mass and is the speed (magnitude of the velocity) of the body. In SI units, mass is measured in kilograms, speed in metres per second, and the resulting kinetic energy is in joules.

  7. Watt - Wikipedia

    en.wikipedia.org/wiki/Watt

    Power output = energy / time 1 terawatt hour per year = 1 × 10 12 W·h / (365 days × 24 hours per day) ≈ 114 million watts, equivalent to approximately 114 megawatts of constant power output. The watt-second is a unit of energy, equal to the joule. One kilowatt hour is 3,600,000 watt seconds.

  8. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    A large number of fundamental equations in physics involve first or second time derivatives of quantities. Many other fundamental quantities in science are time derivatives of one another: force is the time derivative of momentum; power is the time derivative of energy; electric current is the time derivative of electric charge; and so on.

  9. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    hide. In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.