enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_inverse

    In modular arithmetic, the modular multiplicative inverse of a is also defined: it is the number x such that ax ≡ 1 (mod n). This multiplicative inverse exists if and only if a and n are coprime. For example, the inverse of 3 modulo 11 is 4 because 4 ⋅ 3 ≡ 1 (mod 11). The extended Euclidean algorithm may be used to compute it.

  3. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    A modular multiplicative inverse of a modulo m can be found by using the extended Euclidean algorithm. The Euclidean algorithm determines the greatest common divisor (gcd) of two integers, say a and m. If a has a multiplicative inverse modulo m, this gcd must be 1. The last of several equations produced by the algorithm may be solved for this gcd.

  4. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Integer multiplication respects the congruence classes, that is, a ≡ a' and b ≡ b' (mod n) implies ab ≡ a'b' (mod n). This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity. Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ ...

  5. Formal power series - Wikipedia

    en.wikipedia.org/wiki/Formal_power_series

    Once we have defined multiplication for formal power series, we can define multiplicative inverses as follows. The multiplicative inverse of a formal power series A is a formal power series C such that AC = 1, provided that such a formal power series exists. It turns out that if A has a multiplicative inverse, it is unique, and we denote it by ...

  6. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    The multiplicative inverse of an element may be computed by using the extended Euclidean algorithm (see Extended Euclidean algorithm § Modular integers). Let F {\displaystyle F} be a finite field. For any element x {\displaystyle x} in F {\displaystyle F} and any integer n {\displaystyle n} , denote by n ⋅ x {\displaystyle n\cdot x} the sum ...

  7. Dirichlet character - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_character

    If the product of two characters is defined by pointwise multiplication () = (), the identity by the trivial character () = and the inverse by complex inversion = then ^ becomes an abelian group. [ 7 ]

  8. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    For example, 3 5 = 3 · 3 · 3 · 3 · 3 = 243. The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power. The word "raised" is usually omitted, and sometimes "power" as well, so 3 5 can be simply read "3 to the 5th", or "3 to the 5".

  9. Multiplicative function - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_function

    For example (n/p), the Legendre symbol, considered as a function of n where p is a fixed prime number. An example of a non-multiplicative function is the arithmetic function r 2 (n) - the number of representations of n as a sum of squares of two integers, positive, negative, or zero, where in counting the number of ways, reversal of order is ...