Search results
Results from the WOW.Com Content Network
Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (γ), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:
The area of the blue region converges on the Euler–Mascheroni constant, which is the 0th Stieltjes constant. In mathematics , the Stieltjes constants are the numbers γ k {\displaystyle \gamma _{k}} that occur in the Laurent series expansion of the Riemann zeta function :
The first terms of the series sum to approximately +, where is the natural logarithm and is the Euler–Mascheroni constant. Because the logarithm has arbitrarily large values, the harmonic series does not have a finite limit: it is a divergent series .
The harmonic number with = ⌊ ⌋ (red line) with its asymptotic limit + (blue line) where is the Euler–Mascheroni constant.. In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers: [1] = + + + + = =.
The definition for the gamma function due to Weierstrass is also valid for all complex numbers except non-positive integers: = = (+) /, where is the Euler–Mascheroni constant. [1] This is the Hadamard product of 1 / Γ ( z ) {\displaystyle 1/\Gamma (z)} in a rewritten form.
Euler's product formula for the gamma function, combined with the functional equation and an identity for the Euler–Mascheroni constant, yields the following expression for the digamma function, valid in the complex plane outside the negative integers (Abramowitz and Stegun 6.3.16): [1]
Since sinc is an even entire function (holomorphic over the entire complex plane), Si is entire, odd, and the integral in its definition can be taken along any path connecting the endpoints. By definition, Si(x) is the antiderivative of sin x / x whose value is zero at x = 0, and si(x) is the antiderivative whose value is zero at x = ∞.
The Euler-Mascheroni constant emerges as the Improper Integral from zero to infinity at the integration on the product of negative Natural Logarithm and the Exponential reciprocal. But it is also the improper integral within the same limits on the Cardinalized Difference of the reciprocal of the Successor Function and the Exponential Reciprocal: