enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Föppl–von Kármán equations - Wikipedia

    en.wikipedia.org/wiki/Föppl–von_Kármán...

    where E is the Young's modulus of the plate material (assumed homogeneous and isotropic), υ is the Poisson's ratio, h is the thickness of the plate, w is the out–of–plane deflection of the plate, P is the external normal force per unit area of the plate, σ αβ is the Cauchy stress tensor, and α, β are indices that take values of 1 and ...

  3. Bending of plates - Wikipedia

    en.wikipedia.org/wiki/Bending_of_plates

    Bending of plates, or plate bending, refers to the deflection of a plate perpendicular to the plane of the plate under the action of external forces and moments. The amount of deflection can be determined by solving the differential equations of an appropriate plate theory. The stresses in the plate can be calculated from these deflections.

  4. Plate theory - Wikipedia

    en.wikipedia.org/wiki/Plate_theory

    In continuum mechanics, plate theories are mathematical descriptions of the mechanics of flat plates that draw on the theory of beams. Plates are defined as plane structural elements with a small thickness compared to the planar dimensions. [1] The typical thickness to width ratio of a plate structure is less than 0.1.

  5. Kirchhoff–Love plate theory - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff–Love_plate_theory

    The Kirchhoff–Love theory of plates is a two-dimensional mathematical model that is used to determine the stresses and deformations in thin plates subjected to forces and moments. This theory is an extension of Euler-Bernoulli beam theory and was developed in 1888 by Love [ 1 ] using assumptions proposed by Kirchhoff .

  6. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    Deflection (f) in engineering. In structural engineering, deflection is the degree to which a part of a long structural element (such as beam) is deformed laterally (in the direction transverse to its longitudinal axis) under a load. It may be quantified in terms of an angle (angular displacement) or a distance (linear displacement).

  7. Vibration of plates - Wikipedia

    en.wikipedia.org/wiki/Vibration_of_plates

    Vibration mode of a clamped square plate. The vibration of plates is a special case of the more general problem of mechanical vibrations.The equations governing the motion of plates are simpler than those for general three-dimensional objects because one of the dimensions of a plate is much smaller than the other two.

  8. Plate (structure) - Wikipedia

    en.wikipedia.org/wiki/Plate_(structure)

    A plate is a structural element which is characterized by a three-dimensional solid whose thickness is very small when compared with other dimensions. [ 1 ] The effects of the loads that are expected to be applied on it only generate stresses whose resultants are, in practical terms, exclusively normal to the element's thickness.

  9. Thermal boundary layer thickness and shape - Wikipedia

    en.wikipedia.org/wiki/Thermal_boundary_layer...

    This turbulent boundary layer thickness formula assumes 1) the flow is turbulent right from the start of the boundary layer and 2) the turbulent boundary layer behaves in a geometrically similar manner (i.e. the velocity profiles are geometrically similar along the flow in the x-direction, differing only by stretching factors in and (,) [5 ...