Search results
Results from the WOW.Com Content Network
In the first example a user is free to use the public name variable however they see fit - in the second however the writer of the class retains control over how the private name variable is read and written by only permitting access to the field via its getName and setName methods.
Perhaps the most well-known is Hungarian notation, which encodes either the purpose ("Apps Hungarian") or the type ("Systems Hungarian") of a variable in its name. [17] For example, the prefix "sz" for the variable szName indicates that the variable is a null-terminated string.
An identifier I' (for variable X') masks an identifier I (for variable X) when two conditions are met I' has the same name as I; I' is defined in a scope which is a subset of the scope of I; The outer variable X is said to be shadowed by the inner variable X'. For example, the parameter "foo" shadows the local variable "foo" in this common pattern:
Python's runtime does not restrict access to such attributes, the mangling only prevents name collisions if a derived class defines an attribute with the same name. On encountering name mangled attributes, Python transforms these names by prepending a single underscore and the name of the enclosing class, for example:
A snippet of Java code with keywords highlighted in bold blue font. The syntax of Java is the set of rules defining how a Java program is written and interpreted. The syntax is mostly derived from C and C++. Unlike C++, Java has no global functions or variables, but has data members which are also regarded as global variables.
In object-oriented computer programming, a null object is an object with no referenced value or with defined neutral (null) behavior.The null object design pattern, which describes the uses of such objects and their behavior (or lack thereof), was first published as "Void Value" [1] and later in the Pattern Languages of Program Design book series as "Null Object".
Many languages have explicit pointers or references. Reference types differ from these in that the entities they refer to are always accessed via references; for example, whereas in C++ it's possible to have either a std:: string and a std:: string *, where the former is a mutable string and the latter is an explicit pointer to a mutable string (unless it's a null pointer), in Java it is only ...
A basic example is in the argv argument to the main function in C (and C++), which is given in the prototype as char **argv—this is because the variable argv itself is a pointer to an array of strings (an array of arrays), so *argv is a pointer to the 0th string (by convention the name of the program), and **argv is the 0th character of the ...