enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Overshoot (signal) - Wikipedia

    en.wikipedia.org/wiki/Overshoot_(signal)

    In control theory, overshoot refers to an output exceeding its final, steady-state value. [2] For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step

  3. Damping - Wikipedia

    en.wikipedia.org/wiki/Damping

    In control theory, overshoot refers to an output exceeding its final, steady-state value. [13] For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step response minus one.

  4. Logarithmic decrement - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_decrement

    The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

  5. Control theory - Wikipedia

    en.wikipedia.org/wiki/Control_theory

    Pierre-Simon Laplace invented the Z-transform in his work on probability theory, now used to solve discrete-time control theory problems. The Z-transform is a discrete-time equivalent of the Laplace transform which is named after him.

  6. RLC circuit - Wikipedia

    en.wikipedia.org/wiki/RLC_circuit

    The Q factor is a widespread measure used to characterise resonators. It is defined as the peak energy stored in the circuit divided by the average energy dissipated in it per radian at resonance. Low-Q circuits are therefore damped and lossy and high-Q circuits are underdamped and prone to amplitude extremes if driven at the resonant frequency.

  7. Q factor - Wikipedia

    en.wikipedia.org/wiki/Q_factor

    A second-order Butterworth filter (i.e., continuous-time filter with the flattest passband frequency response) has an underdamped Q = ⁠ 1 / √ 2 ⁠. [11] A pendulum's Q-factor is: Q = Mω/Γ, where M is the mass of the bob, ω = 2π/T is the pendulum's radian frequency of oscillation, and Γ is the frictional damping force on the pendulum ...

  8. Category:Zeta and L-functions - Wikipedia

    en.wikipedia.org/wiki/Category:Zeta_and_L-functions

    Zeta functions and L-functions express important relations between the geometry of Riemann surfaces, number theory and dynamical systems.Zeta functions, and their generalizations such as the Selberg class S, are conjectured to have various important properties, including generalizations of the Riemann hypothesis and various relationships with automorphic forms as well as to the representations ...

  9. Weil conjectures - Wikipedia

    en.wikipedia.org/wiki/Weil_conjectures

    Suppose that X is a non-singular n-dimensional projective algebraic variety over the field F q with q elements. The zeta function ζ(X, s) of X is by definition (,) = ⁡ (=)where N m is the number of points of X defined over the degree m extension F q m of F q.