enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    An illustrative example of the two effects is that sound travels only 4.3 times faster in water than air, despite enormous differences in compressibility of the two media. The reason is that the greater density of water, which works to slow sound in water relative to the air, nearly makes up for the compressibility differences in the two media.

  3. Underwater acoustics - Wikipedia

    en.wikipedia.org/wiki/Underwater_acoustics

    Output of a computer model of underwater acoustic propagation in a simplified ocean environment. A seafloor map produced by multibeam sonar. Underwater acoustics (also known as hydroacoustics) is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries.

  4. Acoustic wave - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave

    An acoustic wave is a mechanical wave that transmits energy through the movements of atoms and molecules. Acoustic waves transmit through fluids in a longitudinal manner (movement of particles are parallel to the direction of propagation of the wave); in contrast to electromagnetic waves that transmit in transverse manner (movement of particles at a right angle to the direction of propagation ...

  5. Stokes's law of sound attenuation - Wikipedia

    en.wikipedia.org/wiki/Stokes's_law_of_sound...

    In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...

  6. Mach number - Wikipedia

    en.wikipedia.org/wiki/Mach_number

    c is the speed of sound in the medium, which in air varies with the square root of the thermodynamic temperature. By definition, at Mach 1, the local flow velocity u is equal to the speed of sound. At Mach 0.65, u is 65% of the speed of sound (subsonic), and, at Mach 1.35, u is 35% faster than the speed of sound (supersonic).

  7. Sound - Wikipedia

    en.wikipedia.org/wiki/Sound

    The speed of sound depends on the medium the waves pass through, and is a fundamental property of the material. The first significant effort towards measurement of the speed of sound was made by Isaac Newton. He believed the speed of sound in a particular substance was equal to the square root of the pressure acting on it divided by its density:

  8. SOFAR channel - Wikipedia

    en.wikipedia.org/wiki/SOFAR_channel

    The SOFAR channel (short for sound fixing and ranging channel), or deep sound channel (DSC), [1] is a horizontal layer of water in the ocean at which depth the speed of sound is at its minimum. The SOFAR channel acts as a waveguide for sound, and low frequency sound waves within the channel may travel thousands of miles before dissipating.

  9. Sound pressure - Wikipedia

    en.wikipedia.org/wiki/Sound_pressure

    Sound pressure or acoustic pressure is the local pressure deviation from the ambient (average or equilibrium) atmospheric pressure, caused by a sound wave. In air, sound pressure can be measured using a microphone, and in water with a hydrophone. The SI unit of sound pressure is the pascal (Pa). [1]