Search results
Results from the WOW.Com Content Network
It is relatively straightforward to construct a line t tangent to a circle at a point T on the circumference of the circle: A line a is drawn from O, the center of the circle, through the radial point T; The line t is the perpendicular line to a. Construction of a tangent to a given circle (black) from a given exterior point (P).
An osculating curve from a given family of curves is a curve that has the highest possible order of contact with a given curve at a given point; for instance a tangent line is an osculating curve from the family of lines, and has first-order contact with the given curve; an osculating circle is an osculating curve from the family of circles ...
To construct the inverse P ' of a point P outside a circle Ø: Draw the segment from O (center of circle Ø) to P. Let M be the midpoint of OP. (Not shown) Draw the circle c with center M going through P. (Not labeled. It's the blue circle) Let N and N ' be the points where Ø and c intersect. Draw segment NN '. P ' is where OP and NN ' intersect.
A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry , a circular segment or disk segment (symbol: ⌓ ) is a region of a disk [ 1 ] which is "cut off" from the rest of the disk by a straight line.
Let Xx + Yy + Zz = 0 be the equation of a line, with (X, Y, Z) being designated its line coordinates in a dual projective plane. The condition that the line is tangent to the curve can be expressed in the form F(X, Y, Z) = 0 which is the tangential equation of the curve. At a point (p, q, r) on the curve, the tangent is given by
An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. [2] The osculating circle provides a way to understand the local behavior of a curve and is commonly used in differential geometry and calculus.
The length of the curve is given by the formula = | ′ | where | ′ | is the Euclidean norm of the tangent vector ′ to the curve. To justify this formula, define the arc length as limit of the sum of linear segment lengths for a regular partition of [ a , b ] {\displaystyle [a,b]} as the number of segments approaches infinity.
The tangent lines must be equal in length for any point on the radical axis: | | = | |. If P, T 1, T 2 lie on a common tangent, then P is the midpoint of ¯.. In Euclidean geometry, the radical axis of two non-concentric circles is the set of points whose power with respect to the circles are equal.