enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poincaré half-plane model - Wikipedia

    en.wikipedia.org/wiki/Poincaré_half-plane_model

    The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...

  3. Midpoint - Wikipedia

    en.wikipedia.org/wiki/Midpoint

    Given two points of interest, finding the midpoint of the line segment they determine can be accomplished by a compass and straightedge construction.The midpoint of a line segment, embedded in a plane, can be located by first constructing a lens using circular arcs of equal (and large enough) radii centered at the two endpoints, then connecting the cusps of the lens (the two points where the ...

  4. Smallest-circle problem - Wikipedia

    en.wikipedia.org/wiki/Smallest-circle_problem

    The line q′ in the p m direction is placed to go through an intersection Q x' such that there are intersections in each half of the half-plane not containing the solution. The constrained version of the enclosing problem is run on line q′ which together with q determines the quadrant where the center is located.

  5. Projective harmonic conjugate - Wikipedia

    en.wikipedia.org/wiki/Projective_harmonic_conjugate

    Midpoint and infinity are harmonic conjugates. When x is the midpoint of the segment from a to b, then = = By the cross-ratio criterion, the harmonic conjugate of x will be y when t(y) = 1. But there is no finite solution for y on the line through a and b.

  6. Simson line - Wikipedia

    en.wikipedia.org/wiki/Simson_line

    The Simson line LN (red) of the triangle ABC with respect to point P on the circumcircle. In geometry, given a triangle ABC and a point P on its circumcircle, the three closest points to P on lines AB, AC, and BC are collinear. [1] The line through these points is the Simson line of P, named for Robert Simson. [2]

  7. Aristotle's axiom - Wikipedia

    en.wikipedia.org/wiki/Aristotle's_axiom

    [2] Without the parallel postulate, Aristotle's axiom is equivalent to each of the following three incidence-geometric statements: [3] Given a line A and a point P on A, as well as two intersecting lines M and N, both parallel to A there exists a line G through P which intersects M but not N.

  8. Midpoint theorem (conics) - Wikipedia

    en.wikipedia.org/wiki/Midpoint_theorem_(conics)

    In geometry, the midpoint theorem describes a property of parallel chords in a conic. It states that the midpoints of parallel chords in a conic are located on a common line. The common line or line segment for the midpoints is called the diameter. For a circle, ellipse or hyperbola the diameter goes through its center.

  9. Symmedian - Wikipedia

    en.wikipedia.org/wiki/Symmedian

    In geometry, symmedians are three particular lines associated with every triangle.They are constructed by taking a median of the triangle (a line connecting a vertex with the midpoint of the opposite side), and reflecting the line over the corresponding angle bisector (the line through the same vertex that divides the angle there in half).