Search results
Results from the WOW.Com Content Network
A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [ 1 ]
Region-based Convolutional Neural Networks (R-CNN) are a family of machine learning models for computer vision, and specifically object detection and localization. [1] The original goal of R-CNN was to take an input image and produce a set of bounding boxes as output, where each bounding box contains an object and also the category (e.g. car or ...
LeNet-5 architecture (overview). LeNet is a series of convolutional neural network structure proposed by LeCun et al.. [1] The earliest version, LeNet-1, was trained in 1989.In general, when "LeNet" is referred to without a number, it refers to LeNet-5 (1998), the most well-known version.
Inception [1] is a family of convolutional neural network (CNN) for computer vision, introduced by researchers at Google in 2014 as GoogLeNet (later renamed Inception v1).). The series was historically important as an early CNN that separates the stem (data ingest), body (data processing), and head (prediction), an architectural design that persists in all modern
A deep CNN of (Dan Cireșan et al., 2011) at IDSIA was 60 times faster than an equivalent CPU implementation. [12] Between May 15, 2011, and September 10, 2012, their CNN won four image competitions and achieved SOTA for multiple image databases. [13] [14] [15] According to the AlexNet paper, [1] Cireșan's earlier net is "somewhat similar."
Choice of model: This depends on the data representation and the application. Model parameters include the number, type, and connectedness of network layers, as well as the size of each and the connection type (full, pooling, etc. ). Overly complex models learn slowly. Learning algorithm: Numerous trade-offs exist between learning algorithms.
In 1943, Warren McCulloch and Walter Pitts proposed the binary artificial neuron as a logical model of biological neural networks. [16] In 1958, Frank Rosenblatt proposed the multilayered perceptron model, consisting of an input layer, a hidden layer with randomized weights that did not learn, and an output layer with learnable connections. [17 ...
The idea is to add structures called "capsules" to a convolutional neural network (CNN), and to reuse output from several of those capsules to form more stable (with respect to various perturbations) representations for higher capsules. [2] The output is a vector consisting of the probability of an observation, and a pose for that observation.