enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Graph partition - Wikipedia

    en.wikipedia.org/wiki/Graph_partition

    Consider a graph G = (V, E), where V denotes the set of n vertices and E the set of edges. For a (k,v) balanced partition problem, the objective is to partition G into k components of at most size v · (n/k), while minimizing the capacity of the edges between separate components. [1]

  3. Kernighan–Lin algorithm - Wikipedia

    en.wikipedia.org/wiki/Kernighan–Lin_algorithm

    The input to the algorithm is an undirected graph G = (V, E) with vertex set V, edge set E, and (optionally) numerical weights on the edges in E.The goal of the algorithm is to partition V into two disjoint subsets A and B of equal (or nearly equal) size, in a way that minimizes the sum T of the weights of the subset of edges that cross from A to B.

  4. Split graph - Wikipedia

    en.wikipedia.org/wiki/Split_graph

    If a graph is both a split graph and an interval graph, then its complement is both a split graph and a comparability graph, and vice versa. The split comparability graphs, and therefore also the split interval graphs, can be characterized in terms of a set of three forbidden induced subgraphs. [7] The split cographs are exactly the threshold ...

  5. Maximum cut - Wikipedia

    en.wikipedia.org/wiki/Maximum_cut

    For a partition of V into subsets U and W, an edge xy is balanced if either s(xy) = + and x and y are in the same subset, or s(xy) = – and x and y are different subsets. BSP aims at finding a partition with the maximum number b(G) of balanced edges in G. The Edwards-ErdÅ‘s gives a lower bound on b(G) for every connected signed graph G.

  6. Multipartite graph - Wikipedia

    en.wikipedia.org/wiki/Multipartite_graph

    These graphs are described by notation with a capital letter K subscripted by a sequence of the sizes of each set in the partition. For instance, K 2,2,2 is the complete tripartite graph of a regular octahedron , which can be partitioned into three independent sets each consisting of two opposite vertices.

  7. Strength of a graph - Wikipedia

    en.wikipedia.org/wiki/Strength_of_a_graph

    In graph theory, the strength of an undirected graph corresponds to the minimum ratio of edges removed/components created in a decomposition of the graph in question. It is a method to compute partitions of the set of vertices and detect zones of high concentration of edges, and is analogous to graph toughness which is defined similarly for vertex removal.

  8. Component (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Component_(graph_theory)

    A graph with three components. In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets. A graph that is itself connected has exactly one component, consisting ...

  9. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    A graph factorization is a partition of the edges of the graph into factors; a k-factorization is a partition into k-factors. For instance a 1-factorization is an edge coloring with the additional property that each vertex is incident to an edge of each color. family A synonym for class. finite