Search results
Results from the WOW.Com Content Network
T2*-weighted imaging of the brain 26 weeks after subarachnoid hemorrhage, showing hemosiderin deposits as hypointense areas. [1] T 2 *-weighted imaging is an MRI sequence to quantify observable or effective T 2 (T2* or "T2-star"). In this sequence, hemorrhages and hemosiderin deposits become hypointense. [2]
Fluid-attenuated inversion recovery (FLAIR) is a magnetic resonance imaging sequence with an inversion recovery set to null fluids. For example, it can be used in brain imaging to suppress cerebrospinal fluid (CSF) effects on the image, so as to bring out the periventricular hyperintense lesions, such as multiple sclerosis (MS) plaques. [ 1 ]
Images of CAA collected at 1.5 T. Left, conventional T2* (TE=20 ms), center, SWI processed magnitude image (TE=40 ms) and right, SWI phase image (TE=40 ms) Gradient recalled echo (GRE) imaging is the conventional way to detect hemorrhage in CAA , however SWI is a much more sensitive technique that can reveal many micro-hemorrhages that are ...
In Dynamic susceptibility contrast MR imaging (DSC-MRI, or simply DSC), Gadolinium contrast agent (Gd) is injected (usually intravenously) and a time series of fast T2*-weighted images is acquired. As Gadolinium passes through the tissues, it induces a reduction of T2* in the nearby water protons; the corresponding decrease in signal intensity ...
The study of CSF flow became one of Phase-contrast MRI's major applications. The key to Phase-contrast MRI (PC-MRI) is the use of a bipolar gradient. [4] A bipolar gradient has equal positive and negative magnitudes that are applied for the same time duration.
Magnetic resonance angiography (MRA) is a group of techniques based on magnetic resonance imaging (MRI) to image blood vessels. Magnetic resonance angiography is used to generate images of arteries (and less commonly veins) in order to evaluate them for stenosis (abnormal narrowing), occlusions, aneurysms (vessel wall dilatations, at risk of rupture) or other abnormalities.
MRI scans showing hyperintensities. A hyperintensity or T2 hyperintensity is an area of high intensity on types of magnetic resonance imaging (MRI) scans of the brain of a human or of another mammal that reflect lesions produced largely by demyelination and axonal loss.
Interventional magnetic resonance imaging, also interventional MRI or IMRI, is the use of magnetic resonance imaging (MRI) to do interventional radiology procedures.. Because of the lack of harmful effects on the patient and the operator, MR is well suited for "interventional radiology", where the images produced by an MRI scanner are used to guide a minimally-invasive procedure ...