Search results
Results from the WOW.Com Content Network
r = the population growth rate, which Ronald Fisher called the Malthusian parameter of population growth in The Genetical Theory of Natural Selection, [2] and Alfred J. Lotka called the intrinsic rate of increase, [3] [4] t = time. The model can also be written in the form of a differential equation: =
Often the independent variable is time. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverse of logarithmic growth.
RGR is a concept relevant in cases where the increase in a state variable over time is proportional to the value of that state variable at the beginning of a time period. In terms of differential equations , if S {\displaystyle S} is the current size, and d S d t {\displaystyle {\frac {dS}{dt}}} its growth rate, then relative growth rate is
The Gompertz curve or Gompertz function is a type of mathematical model for a time series, named after Benjamin Gompertz (1779–1865). It is a sigmoid function which describes growth as being slowest at the start and end of a given time period.
For example, with an annual growth rate of 4.8% the doubling time is 14.78 years, and a doubling time of 10 years corresponds to a growth rate between 7% and 7.5% (actually about 7.18%). When applied to the constant growth in consumption of a resource, the total amount consumed in one doubling period equals the total amount consumed in all ...
Compound annual growth rate (CAGR) is a business, economics and investing term representing the mean annualized growth rate for compounding values over a given time period. [1] [2] CAGR smoothes the effect of volatility of periodic values that can render arithmetic means less meaningful. It is particularly useful to compare growth rates of ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The doubling time (t d) of a population is the time required for the population to grow to twice its size. [24] We can calculate the doubling time of a geometric population using the equation: N t = λ t N 0 by exploiting our knowledge of the fact that the population (N) is twice its size (2N) after the doubling time. [20]