Search results
Results from the WOW.Com Content Network
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
Other related books on the mathematics of 3-manifolds include 3-manifolds by John Hempel (1976), Knots, links, braids and 3-manifolds by Victor V. Prasolov and Alexei B. Sosinskiĭ (1997), Algorithmic topology and classification of 3-manifolds by Sergey V. Matveev (2nd ed., 2007), and a collection of unpublished lecture notes on 3-manifolds by Allen Hatcher.
In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology , geometric topology , and algebraic topology .
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance.More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms ...
Topological geometry deals with incidence structures consisting of a point set and a family of subsets of called lines or circles etc. such that both and carry a topology and all geometric operations like joining points by a line or intersecting lines are continuous.
Continuum (topology) Extended real number line; Long line (topology) Sierpinski space; Cantor set, Cantor space, Cantor cube; Space-filling curve; Topologist's sine curve; Uniform norm; Weak topology; Strong topology; Hilbert cube; Lower limit topology; Sorgenfrey plane; Real tree; Compact-open topology; Zariski topology; Kuratowski closure ...
A Topological Picturebook is a book on mathematical visualization in low-dimensional topology by George K. Francis. It was originally published by Springer in 1987, and reprinted in paperback in 2007. The Basic Library List Committee of the Mathematical Association of America has recommended its inclusion in undergraduate mathematics libraries. [1]
The term topology was introduced by Johann Benedict Listing in the 19th century, although it was not until the first decades of the 20th century that the idea of a topological space was developed. This is a list of topology topics. See also: Topology glossary; List of topologies; List of general topology topics; List of geometric topology topics