Search results
Results from the WOW.Com Content Network
A database relation (e.g. a database table) is said to meet third normal form standards if all the attributes (e.g. database columns) are functionally dependent on solely a key, except the case of functional dependency whose right hand side is a prime attribute (an attribute which is strictly included into some key).
Codd went on to define the second normal form (2NF) and third normal form (3NF) in 1971, [5] and Codd and Raymond F. Boyce defined the Boyce–Codd normal form (BCNF) in 1974. [6] Ronald Fagin introduced the fourth normal form (4NF) in 1977 and the fifth normal form (5NF) in 1979. Christopher J. Date introduced the sixth normal form (6NF) in 2003.
Boyce–Codd normal form (BCNF or 3.5NF) is a normal form used in database normalization. It is a slightly stricter version of the third normal form (3NF). By using BCNF, a database will remove all redundancies based on functional dependencies .
In database normalization, one of the important features of third normal form is that it excludes certain types of transitive dependencies. E.F. Codd, the inventor of the relational model, introduced the concepts of transitive dependence and third normal form in 1971. [1]
Normal forms are database normalization levels which determine the "goodness" of a table. Generally, the third normal form is considered to be a "good" standard for a relational database. [citation needed] Normalization aims to free the database from update, insertion and deletion anomalies.
If some attribute is not dependent on a key, then it's not 'non-prime'. If there's an attribute that's not dependent on a key, then that so-called key isn't a key. Note that attributes that are elements within a key are indeed dependent on the key: that's prime dependency (a trivial Functional Dependency), therefore not non-prime.
Elementary key normal form (EKNF) is a subtle enhancement on third normal form, thus EKNF tables are in 3NF by definition. This happens when there is more than one unique compound key and they overlap. Such cases can cause redundant information in the overlapping column(s).
Given a set of functional dependencies , an Armstrong relation is a relation which satisfies all the functional dependencies in the closure + and only those dependencies. . Unfortunately, the minimum-size Armstrong relation for a given set of dependencies can have a size which is an exponential function of the number of attributes in the dependencies conside