enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantification (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Quantification_(machine...

    In machine learning and data mining, quantification (variously called learning to quantify, or supervised prevalence estimation, or class prior estimation) is the task of using supervised learning in order to train models (quantifiers) that estimate the relative frequencies (also known as prevalence values) of the classes of interest in a sample of unlabelled data items.

  3. Approximate entropy - Wikipedia

    en.wikipedia.org/wiki/Approximate_entropy

    Lower computational demand. ApEn can be designed to work for small data samples (< points) and can be applied in real time. Less effect from noise. If data is noisy, the ApEn measure can be compared to the noise level in the data to determine what quality of true information may be present in the data.

  4. Conformal prediction - Wikipedia

    en.wikipedia.org/wiki/Conformal_prediction

    A data point in the calibration set will result in an α-value for its true class; Prediction algorithm: For a test data point, generate a new α-value; Find a p-value for each class of the data point; If the p-value is greater than the significance level, include the class in the output [4]

  5. Quantities of information - Wikipedia

    en.wikipedia.org/wiki/Quantities_of_information

    This is a measure of how much information can be obtained about one random variable by observing another. The mutual information of X {\displaystyle X} relative to Y {\displaystyle Y} (which represents conceptually the average amount of information about X {\displaystyle X} that can be gained by observing Y {\displaystyle Y} ) is given by:

  6. Random sample consensus - Wikipedia

    en.wikipedia.org/wiki/Random_sample_consensus

    A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.

  7. Orange (software) - Wikipedia

    en.wikipedia.org/wiki/Orange_(software)

    Orange is an open-source software package released under GPL and hosted on GitHub.Versions up to 3.0 include core components in C++ with wrappers in Python.From version 3.0 onwards, Orange uses common Python open-source libraries for scientific computing, such as numpy, scipy and scikit-learn, while its graphical user interface operates within the cross-platform Qt framework.

  8. Raven's Progressive Matrices - Wikipedia

    en.wikipedia.org/wiki/Raven's_Progressive_Matrices

    This format is designed to measure the test taker's reasoning ability, the eductive ("meaning-making") component of Spearman's g (g is often referred to as general intelligence). The tests were originally developed by John C. Raven in 1936. [3] In each test item, the subject is asked to identify the missing element that completes a pattern.

  9. Box counting - Wikipedia

    en.wikipedia.org/wiki/Box_counting

    Figure 1. A 32-segment quadric fractal viewed through "boxes" of different sizes. The pattern illustrates self similarity.. Box counting is a method of gathering data for analyzing complex patterns by breaking a dataset, object, image, etc. into smaller and smaller pieces, typically "box"-shaped, and analyzing the pieces at each smaller scale.