enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Foundations of Algebraic Geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_algebraic...

    Foundations of Algebraic Geometry is a book by André Weil (1946, 1962) that develops algebraic geometry over fields of any characteristic. In particular it gives a careful treatment of intersection theory by defining the local intersection multiplicity of two subvarieties .

  3. Geometry of numbers - Wikipedia

    en.wikipedia.org/wiki/Geometry_of_numbers

    Geometry of numbers is the part of number theory which uses geometry for the study of algebraic numbers. Typically, a ring of algebraic integers is viewed as a lattice in R n , {\displaystyle \mathbb {R} ^{n},} and the study of these lattices provides fundamental information on algebraic numbers. [ 1 ]

  4. Kähler manifold - Wikipedia

    en.wikipedia.org/wiki/Kähler_manifold

    A Kähler manifold is a Riemannian manifold of even dimension whose holonomy group is contained in the unitary group ⁡ (). [3] Equivalently, there is a complex structure on the tangent space of at each point (that is, a real linear map from to itself with =) such that preserves the metric (meaning that (,) = (,)) and is preserved by parallel transport.

  5. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    To a system of points, straight lines, and planes, it is impossible to add other elements in such a manner that the system thus generalized shall form a new geometry obeying all of the five groups of axioms. In other words, the elements of geometry form a system which is not susceptible of extension, if we regard the five groups of axioms as valid.

  6. Divine Proportions: Rational Trigonometry to Universal Geometry

    en.wikipedia.org/wiki/Divine_Proportions:...

    The book advocates replacing the usual basic quantities of trigonometry, Euclidean distance and angle measure, by squared distance and the square of the sine of the angle, respectively. This is logically equivalent to the standard development (as the replacement quantities can be expressed in terms of the standard ones and vice versa).

  7. Scheme (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Scheme_(mathematics)

    In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x 2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers).

  8. Glossary of classical algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_classical...

    A plane conic passing through the circular points at infinity. For real projective geometry this is much the same as a circle in the usual sense, but for complex projective geometry it is different: for example, circles have underlying topological spaces given by a 2-sphere rather than a 1-sphere. circuit A component of a real algebraic curve.

  9. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    The thirteen books cover Euclidean geometry and the ancient Greek version of elementary number theory. With the exception of Autolycus' On the Moving Sphere, the Elements is one of the oldest extant Greek mathematical treatises, [9] and it is the oldest extant axiomatic deductive treatment of mathematics.