Search results
Results from the WOW.Com Content Network
In most contexts a mention of rate of fluid flow is likely to refer to the volumetric rate. In hydrometry, the volumetric flow rate is known as discharge. Volumetric flow rate should not be confused with volumetric flux, as defined by Darcy's law and represented by the symbol q, with units of m 3 /(m 2 ·s), that is, m·s −1. The integration ...
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
The following laws are derived from the two coefficient equations by setting the coefficient for one operating condition (e.g. Q 1, n 1, D 1) equal to the coefficient for a different operating condition (e.g. Q 2, n 2, D 2). Law 1. With impeller diameter (D) held constant: Law 1a. Flow is proportional to shaft speed: [2]
The discharge formula, Q = A V, can be used to rewrite Gauckler–Manning's equation by substitution for V. Solving for Q then allows an estimate of the volumetric flow rate (discharge) without knowing the limiting or actual flow velocity. The formula can be obtained by use of dimensional analysis.
For a compressible fluid in a tube the volumetric flow rate Q(x) and the axial velocity are not constant along the tube; but the mass flow rate is constant along the tube length. The volumetric flow rate is usually expressed at the outlet pressure. As fluid is compressed or expanded, work is done and the fluid is heated or cooled.
μ is the dynamic viscosity of the fluid (Pa·s = N·s/m 2 = kg/(m·s)); Q is the volumetric flow rate, used here to measure flow instead of mean velocity according to Q = π / 4 D c 2 <v> (m 3 /s). Note that this laminar form of Darcy–Weisbach is equivalent to the Hagen–Poiseuille equation, which is analytically derived from the ...
[4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.