enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. White noise - Wikipedia

    en.wikipedia.org/wiki/White_noise

    A random vector (that is, a random variable with values in R n) is said to be a white noise vector or white random vector if its components each have a probability distribution with zero mean and finite variance, [clarification needed] and are statistically independent: that is, their joint probability distribution must be the product of the ...

  3. White noise analysis - Wikipedia

    en.wikipedia.org/wiki/White_noise_analysis

    In probability theory, a branch of mathematics, white noise analysis, otherwise known as Hida calculus, is a framework for infinite-dimensional and stochastic calculus, based on the Gaussian white noise probability space, to be compared with Malliavin calculus based on the Wiener process. [1]

  4. Stationary process - Wikipedia

    en.wikipedia.org/wiki/Stationary_process

    Two simulated time series processes, one stationary and the other non-stationary, are shown above. The augmented Dickey–Fuller (ADF) test statistic is reported for each process; non-stationarity cannot be rejected for the second process at a 5% significance level. White noise is the simplest example of a stationary process.

  5. Allan variance - Wikipedia

    en.wikipedia.org/wiki/Allan_variance

    The Allan variance plot does not distinguish them. It requires modified Allan variance plot to distinguish them. 2. White frequency-modulation noise (FM): at a lower frequency, white noise in frequency dominates. This corresponds to () /, [] = 3.

  6. White test - Wikipedia

    en.wikipedia.org/wiki/White_test

    White test is a statistical test that establishes whether the variance of the errors in a regression model is constant: that is for homoskedasticity. This test, and an estimator for heteroscedasticity-consistent standard errors , were proposed by Halbert White in 1980. [ 1 ]

  7. Whitening transformation - Wikipedia

    en.wikipedia.org/wiki/Whitening_transformation

    The transformation is called "whitening" because it changes the input vector into a white noise vector. Several other transformations are closely related to whitening: the decorrelation transform removes only the correlations but leaves variances intact, the standardization transform sets variances to 1 but leaves correlations intact,

  8. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    An AR(1) process is given by: = + where is a white noise process with zero mean and constant variance . (Note: The subscript on φ 1 {\displaystyle \varphi _{1}} has been dropped.) The process is weak-sense stationary if | φ | < 1 {\displaystyle |\varphi |<1} since it is obtained as the output of a stable filter whose input is white noise.

  9. Gaussian noise - Wikipedia

    en.wikipedia.org/wiki/Gaussian_noise

    In signal processing theory, Gaussian noise, named after Carl Friedrich Gauss, is a kind of signal noise that has a probability density function (pdf) equal to that of the normal distribution (which is also known as the Gaussian distribution). [1] [2] In other words, the values that the noise can take are Gaussian-distributed.