Search results
Results from the WOW.Com Content Network
This updating is an important part of the disjoint-set forest's amortized performance guarantee. There are several algorithms for Find that achieve the asymptotically optimal time complexity. One family of algorithms, known as path compression, makes every node between the query node and the root point to the root. Path compression can be ...
The pseudocode below determines the lowest common ancestor of each pair in P, given the root r of a tree in which the children of node n are in the set n.children. For this offline algorithm, the set P must be specified in advance. It uses the MakeSet, Find, and Union functions of a disjoint-set data structure.
In graph theory, a tree is an undirected graph in which any two vertices are connected by exactly one path, or equivalently a connected acyclic undirected graph. [1] A forest is an undirected graph in which any two vertices are connected by at most one path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees. [2]
In mathematics, the disjoint union (or discriminated union) of the sets A and B is the set formed from the elements of A and B labelled (indexed) with the name of the set from which they come. So, an element belonging to both A and B appears twice in the disjoint union, with two different labels.
An efficient implementation using a disjoint-set data structure can perform each union and find operation on two sets in nearly constant amortized time (specifically, (()) time; () < for any plausible value of ), so the running time of this algorithm is essentially proportional to the number of walls available to the maze.
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
The following example shows how Suurballe's algorithm finds the shortest pair of disjoint paths from A to F. Figure A illustrates a weighted graph G. Figure B calculates the shortest path P 1 from A to F (A–B–D–F). Figure C illustrates the shortest path tree T rooted at A, and the computed distances from A to every vertex (u).
In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets { 1 , 2 , 3 } {\displaystyle \{1,2,3\}} and { 3 , 4 } {\displaystyle \{3,4\}} is { 1 , 2 , 4 ...