Search results
Results from the WOW.Com Content Network
For this offline algorithm, the set P must be specified in advance. It uses the MakeSet, Find, and Union functions of a disjoint-set data structure. MakeSet(u) removes u to a singleton set, Find(u) returns the standard representative of the set containing u, and Union(u,v) merges the set containing u with the set containing v.
The precise analysis of the performance of a disjoint-set forest is somewhat intricate. However, there is a much simpler analysis that proves that the amortized time for any m Find or Union operations on a disjoint-set forest containing n objects is O(m log * n), where log * denotes the iterated logarithm. [12] [13] [14] [15]
Two disjoint sets. In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. [1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two ...
An efficient implementation using a disjoint-set data structure can perform each union and find operation on two sets in nearly constant amortized time (specifically, (()) time; () < for any plausible value of ), so the running time of this algorithm is essentially proportional to the number of walls available to the maze.
A universe set is an absorbing element of binary union . The empty set ∅ {\displaystyle \varnothing } is an absorbing element of binary intersection ∩ {\displaystyle \cap } and binary Cartesian product × , {\displaystyle \times ,} and it is also a left absorbing element of set subtraction ∖ : {\displaystyle \,\setminus :}
In the examples below, the Euler diagram depicts that the sets Animal and Mineral are disjoint since the corresponding curves are disjoint, and also that the set Four Legs is a subset of the set of Animals. The Venn diagram, which uses the same categories of Animal, Mineral, and Four Legs, does not encapsulate these relationships.
In mathematics, the disjoint union (or discriminated union) of the sets A and B is the set formed from the elements of A and B labelled (indexed) with the name of the set from which they come. So, an element belonging to both A and B appears twice in the disjoint union, with two different labels.
The following example shows how Suurballe's algorithm finds the shortest pair of disjoint paths from A to F. Figure A illustrates a weighted graph G. Figure B calculates the shortest path P 1 from A to F (A–B–D–F). Figure C illustrates the shortest path tree T rooted at A, and the computed distances from A to every vertex (u).