Search results
Results from the WOW.Com Content Network
Relative humidity is defined relative to saturation vapor pressure. [18] Equilibrium vapor pressure does not require the condensed phase to be a flat surface; it might consist of tiny droplets possibly containing solutes (impurities), such as a cloud.
Köhler curves showing how the critical diameter and supersaturation are dependent upon the amount of solute. It's assumed here that the solute is a perfect sphere of sodium chloride with a dry diameter Dp. Köhler theory describes the vapor pressure of aqueous aerosol particles in thermodynamic equilibrium with a humid atmosphere
The Clausius–Clapeyron equation [8]: 509 applies to vaporization of liquids where vapor follows ideal gas law using the ideal gas constant and liquid volume is neglected as being much smaller than vapor volume V. It is often used to calculate vapor pressure of a liquid. [9]
The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure. Water supercooled below its normal freezing point has a higher vapor pressure than that of ice at the same temperature and is, thus, unstable. Calculations of the (saturation) vapor pressure of water are commonly used in meteorology.
The definition of a w is where p is the partial water vapor pressure in equilibrium with the solution, and p* is the (partial) vapor pressure of pure water at the same temperature. An alternate definition can be a w ≡ l w x w {\displaystyle a_{w}\equiv l_{w}x_{w}} where l w is the activity coefficient of water and x w is the mole fraction of ...
In a scientific notion, the relative humidity (or ) of an air-water mixture is defined as the ratio of the partial pressure of water vapor in air to the saturation vapor pressure of water at the same temperature, usually expressed as a percentage: [11] [12] [5] = % /
The path or series of states through which a system passes from an initial equilibrium state to a final equilibrium state [1] and can be viewed graphically on a pressure-volume (P-V), pressure-temperature (P-T), and temperature-entropy (T-s) diagrams. [2] There are an infinite number of possible paths from an initial point to an end point in a ...
The preceding equilibrium equations are typically applied for each phase (liquid or vapor) individually, but the result can be plotted in a single diagram. In a binary boiling-point diagram, temperature (T ) (or sometimes pressure) is graphed vs. x 1. At any given temperature (or pressure) where both phases are present, vapor with a certain ...