Search results
Results from the WOW.Com Content Network
Discovered through gamma-ray burst mapping. Largest-known regular formation in the observable universe. [8] Huge-LQG (2012–2013) 4,000,000,000 [9] [10] [11] Decoupling of 73 quasars. Largest-known large quasar group and the first structure found to exceed 3 billion light-years. "The Giant Arc" (2021) 3,300,000,000 [12] Located 9.2 billion ...
The Hercules–Corona Borealis Great Wall (HCB) [1] [5] or simply the Great Wall [6] is a galaxy filament that is the largest known structure in the observable universe, measuring approximately 10 billion light-years in length (the observable universe is about 93 billion light-years in diameter).
In cosmology, galaxy filaments are the largest known structures in the universe, consisting of walls of galactic superclusters.These massive, thread-like formations can commonly reach 50 to 80 megaparsecs (160 to 260 megalight-years)—with the largest found to date being the Hercules-Corona Borealis Great Wall at around 3 gigaparsecs (9.8 Gly) in length—and form the boundaries between voids ...
They reported that the grouping was, as they announced, the largest known structure in the observable universe. The structure was initially discovered in November 2012 and took two months of verification before its announcement. News about the structure's announcement spread worldwide, and has received great attention from the scientific community.
Scientists have received an “extremely exciting” gravitational-wave signal from the distant universe. ... the heaviest known neutron ... how it might have formed. The signal now known as ...
The universe's size is unknown, and it may be infinite in extent. [14] Some parts of the universe are too far away for the light emitted since the Big Bang to have had enough time to reach Earth or space-based instruments, and therefore lie outside the observable universe. In the future, light from distant galaxies will have had more time to ...
The known icy moons in this range are all ellipsoidal (except Proteus), but trans-Neptunian objects up to 450–500 km radius may be quite porous. [10] For simplicity and comparative purposes, the values are manually calculated assuming that the bodies are all spheres. The size of solid bodies does not include an object's atmosphere.
Size comparison of the event horizons of the black holes of TON 618 and Phoenix A.The orbit of Neptune (white oval) is included for comparison. As a quasar, TON 618 is believed to be the active galactic nucleus at the center of a galaxy, the engine of which is a supermassive black hole feeding on intensely hot gas and matter in an accretion disc.