enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time complexity - Wikipedia

    en.wikipedia.org/wiki/Time_complexity

    An algorithm is said to be exponential time, if T(n) is upper bounded by 2 poly(n), where poly(n) is some polynomial in n. More formally, an algorithm is exponential time if T(n) is bounded by O(2 n k) for some constant k. Problems which admit exponential time algorithms on a deterministic Turing machine form the complexity class known as EXP.

  3. EXPTIME - Wikipedia

    en.wikipedia.org/wiki/EXPTIME

    EXPTIME is one intuitive class in an exponential hierarchy of complexity classes with increasingly more complex oracles or quantifier alternations. For example, the class 2-EXPTIME is defined similarly to EXPTIME but with a doubly exponential time bound. This can be generalized to higher and higher time bounds.

  4. List of unsolved problems in computer science - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Can 3SUM be solved in strongly sub-quadratic time, that is, in time O(n 2−ϵ) for some ϵ>0? Can the edit distance between two strings of length n be computed in strongly sub-quadratic time? (This is only possible if the strong exponential time hypothesis is false.) Can X + Y sorting be done in o(n 2 log n) time?

  5. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, M ( n ) {\displaystyle M(n)} below stands in for the complexity of the chosen multiplication algorithm.

  6. 2-EXPTIME - Wikipedia

    en.wikipedia.org/wiki/2-EXPTIME

    In computational complexity theory, the complexity class 2-EXPTIME (sometimes called 2-EXP) is the set of all decision problems solvable by a deterministic Turing machine in O(2 2 p(n)) time, where p(n) is a polynomial function of n.

  7. Fisher–Yates shuffle - Wikipedia

    en.wikipedia.org/wiki/Fisher–Yates_shuffle

    An alternative method assigns a random number to each element of the set to be shuffled and then sorts the set according to the assigned numbers. The sorting method has the same asymptotic time complexity as Fisher–Yates: although general sorting is O(n log n), numbers are efficiently sorted using Radix sort in O(n) time. Like the Fisher ...

  8. Computational complexity - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity

    Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a n×n integer matrix is () for the usual algorithms (Gaussian elimination).

  9. Element distinctness problem - Wikipedia

    en.wikipedia.org/wiki/Element_distinctness_problem

    In computational complexity theory, the element distinctness problem or element uniqueness problem is the problem of determining whether all the elements of a list are distinct. It is a well studied problem in many different models of computation.