enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. SqueezeNet - Wikipedia

    en.wikipedia.org/wiki/SqueezeNet

    SqueezeNet is a deep neural network for image classification released in 2016. SqueezeNet was developed by researchers at DeepScale , University of California, Berkeley , and Stanford University . In designing SqueezeNet, the authors' goal was to create a smaller neural network with fewer parameters while achieving competitive accuracy.

  3. Insight Segmentation and Registration Toolkit - Wikipedia

    en.wikipedia.org/wiki/Insight_Segmentation_and...

    ITK is an open-source software toolkit for performing registration and segmentation. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning ...

  4. Random walker algorithm - Wikipedia

    en.wikipedia.org/wiki/Random_walker_algorithm

    The random walker algorithm is an algorithm for image segmentation. In the first description of the algorithm, [1] a user interactively labels a small number of pixels with known labels (called seeds), e.g., "object" and "background". The unlabeled pixels are each imagined to release a random walker, and the probability is computed that each ...

  5. Caffe (software) - Wikipedia

    en.wikipedia.org/wiki/Caffe_(software)

    Caffe (Convolutional Architecture for Fast Feature Embedding) is a deep learning framework, originally developed at University of California, Berkeley. It is open source, under a BSD license. [4] It is written in C++, with a Python interface. [5]

  6. U-Net - Wikipedia

    en.wikipedia.org/wiki/U-Net

    U-Net was created by Olaf Ronneberger, Philipp Fischer, Thomas Brox in 2015 and reported in the paper "U-Net: Convolutional Networks for Biomedical Image Segmentation". [1] It is an improvement and development of FCN: Evan Shelhamer, Jonathan Long, Trevor Darrell (2014). "Fully convolutional networks for semantic segmentation". [2]

  7. Image segmentation - Wikipedia

    en.wikipedia.org/wiki/Image_segmentation

    In digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to ...

  8. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    Keras contains numerous implementations of commonly used neural-network building blocks such as layers, objectives, activation functions, optimizers, and a host of tools for working with image and text data to simplify programming in deep neural network area. [11] The code is hosted on GitHub, and community support forums include the GitHub ...

  9. Segmentation-based object categorization - Wikipedia

    en.wikipedia.org/wiki/Segmentation-based_object...

    Given an image D containing an instance of a known object category, e.g. cows, the OBJ CUT algorithm computes a segmentation of the object, that is, it infers a set of labels m. Let m be a set of binary labels, and let Θ {\displaystyle \Theta } be a shape parameter( Θ {\displaystyle \Theta } is a shape prior on the labels from a layered ...