Search results
Results from the WOW.Com Content Network
R = Resistance(s) to heat flow in pipe wall (K/W) Other parameters are as above. [16] The heat transfer coefficient is the heat transferred per unit area per kelvin. Thus area is included in the equation as it represents the area over which the transfer of heat takes place. The areas for each flow will be different as they represent the contact ...
These first Heisler–Gröber charts were based upon the first term of the exact Fourier series solution for an infinite plane wall: (,) = = [ + ], [1]where T i is the initial uniform temperature of the slab, T ∞ is the constant environmental temperature imposed at the boundary, x is the location in the plane wall, λ is the root of λ * tan λ = Bi, and α is thermal diffusivity.
A laptop computer heat pipe system. A heat pipe is a heat-transfer device that employs phase transition to transfer heat between two solid interfaces. [1]At the hot interface of a heat pipe, a volatile liquid in contact with a thermally conductive solid surface turns into a vapor by absorbing heat from that surface.
This is due to the way that metals bond chemically: metallic bonds (as opposed to covalent or ionic bonds) have free-moving electrons that transfer thermal energy rapidly through the metal. The electron fluid of a conductive metallic solid conducts most of the heat flux through the solid. Phonon flux is still present but carries less of the energy.
The physical significance of Biot number can be understood by imagining the heat flow from a hot metal sphere suddenly immersed in a pool to the surrounding fluid. The heat flow experiences two resistances: the first outside the surface of the sphere, and the second within the solid metal (which is influenced by both the size and composition of ...
The heat flow can be modelled by analogy to an electrical circuit where heat flow is represented by current, temperatures are represented by voltages, heat sources are represented by constant current sources, absolute thermal resistances are represented by resistors and thermal capacitances by capacitors.
Solidity ≡ The ratio of the volume of solid to the bulk volume, or the ratio of bulk density to solid grain density, d B /d G. Robertson, p. 5. Beryllium oxide: 218 [37]-260 [47]-300 [47] TPRC Recommended 424 302 272 196 146 111 87 70 57 47 39 33 28.3 24.5 21.5 19.5 18.0 16.7 15.6 15.0 List [32] 293 [47] 200 273.2 300 400 500 600 700 800 900 ...
The rate of heat flow is the amount of heat that is transferred per unit of time in some material, usually measured in watts (joules per second). Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot ...