Search results
Results from the WOW.Com Content Network
Generally, forced convection heat sink thermal performance is improved by increasing the thermal conductivity of the heat sink materials, increasing the surface area (usually by adding extended surfaces, such as fins or foam metal) and by increasing the overall area heat transfer coefficient (usually by increase fluid velocity, such as adding ...
In computing and electronics, thermal pads (also called thermally conductive pad or thermal interface pad) are pre-formed rectangles of solid material (often paraffin wax or silicone based) commonly found on the underside of heatsinks to aid the conduction of heat away from the component being cooled (such as a CPU or another chip) and into the heatsink (usually made from aluminium or copper).
A thermal interface material (shortened to TIM) is any material that is inserted between two components in order to enhance the thermal coupling between them [1].A common use is heat dissipation, in which the TIM is inserted between a heat-producing device (e.g. an integrated circuit) and a heat-dissipating device (e.g. a heat sink).
Thermodynamic heat pump cycles or refrigeration cycles are the conceptual and mathematical models for heat pump, air conditioning and refrigeration systems. [1] A heat pump is a mechanical system that transmits heat from one location (the "source") at a certain temperature to another location (the "sink" or "heat sink") at a higher temperature. [2]
The heat sink thermal resistance model consists of two resistances, namely the resistance in the heat sink base, , and the resistance in the fins, . The heat sink base thermal resistance, , can be written as follows if the source is a uniformly applied the heat sink base. If it is not, then the base resistance is primarily spreading resistance:
Heatsink mounted on a motherboard, cooling the CPU underneath it. This heatsink is designed with the cooling capacity matching the CPU’s TDP. Thermal Design Power ( TDP ), also known as thermal design point , is the maximum amount of heat that a computer component (like a CPU , GPU or system on a chip ) can generate and that its cooling ...
A heat spreader transfers energy as heat from a hotter source to a colder heat sink or heat exchanger. There are two thermodynamic types, passive and active. The most common sort of passive heat spreader is a plate or block of material having high thermal conductivity, such as copper, aluminum, or diamond. An active heat spreader speeds up heat ...
In thermodynamics, the source and sinks correspond to two types of thermal reservoirs, where energy is supplied or extracted, such as heat flux sources or heat sinks. In thermal conduction this is described by the heat equation. [10] The terms are also used in non-equilibrium thermodynamics by introducing the idea of sources and sinks of ...