enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Union (set theory) - Wikipedia

    en.wikipedia.org/wiki/Union_(set_theory)

    For example, the union of three sets A, B, and C contains all elements of A, all elements of B, and all elements of C, and nothing else. Thus, x is an element of A ∪ B ∪ C if and only if x is in at least one of A, B, and C. A finite union is the union of a finite number of sets; the phrase does not imply that the union set is a finite set ...

  3. Inclusion–exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Inclusion–exclusion...

    Venn diagram showing the union of sets A and B as everything not in white. In combinatorics, the inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets; symbolically expressed as

  4. Venn diagram - Wikipedia

    en.wikipedia.org/wiki/Venn_diagram

    A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships in probability, logic, statistics, linguistics and computer science.

  5. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    The union is the join/supremum of and with respect to because: L ⊆ L ∪ R {\displaystyle L\subseteq L\cup R} and R ⊆ L ∪ R , {\displaystyle R\subseteq L\cup R,} and if Z {\displaystyle Z} is a set such that L ⊆ Z {\displaystyle L\subseteq Z} and R ⊆ Z {\displaystyle R\subseteq Z} then L ∪ R ⊆ Z . {\displaystyle L\cup R\subseteq Z.}

  6. Collectively exhaustive events - Wikipedia

    en.wikipedia.org/wiki/Collectively_exhaustive_events

    Another way to describe collectively exhaustive events is that their union must cover all the events within the entire sample space. For example, events A and B are said to be collectively exhaustive if = where S is the sample space. Compare this to the concept of a set of mutually exclusive events. In such a set no more than one event can ...

  7. Naive set theory - Wikipedia

    en.wikipedia.org/wiki/Naive_set_theory

    In symbols, A ⊆ B means that A is a subset of B, and B ⊇ A means that B is a superset of A. Some authors use the symbols ⊂ and ⊃ for subsets, and others use these symbols only for proper subsets. For clarity, one can explicitly use the symbols ⊊ and ⊋ to indicate non-equality.

  8. Symmetric difference - Wikipedia

    en.wikipedia.org/wiki/Symmetric_difference

    In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets { 1 , 2 , 3 } {\displaystyle \{1,2,3\}} and { 3 , 4 } {\displaystyle \{3,4\}} is { 1 , 2 , 4 ...

  9. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...