enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Recursion (computer science) - Wikipedia

    en.wikipedia.org/wiki/Recursion_(computer_science)

    Recursive drawing of a SierpiƄski Triangle through turtle graphics. In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem. [1] [2] Recursion solves such recursive problems by using functions that call themselves from within their own code ...

  3. Recursion - Wikipedia

    en.wikipedia.org/wiki/Recursion

    A recursive step — a set of rules that reduces all successive cases toward the base case. For example, the following is a recursive definition of a person's ancestor. One's ancestor is either: One's parent (base case), or; One's parent's ancestor (recursive step). The Fibonacci sequence is another classic example of recursion: Fib(0) = 0 as ...

  4. Primitive recursive function - Wikipedia

    en.wikipedia.org/wiki/Primitive_recursive_function

    A total recursive function is a partial recursive function that is defined for every input. Every primitive recursive function is total recursive, but not all total recursive functions are primitive recursive. The Ackermann function A(m,n) is a well-known example of a total recursive function (in fact, provable total), that is not primitive ...

  5. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.

  6. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    For example, consider the recursive formulation for generating the Fibonacci sequence: F i = F i−1 + F i−2, with base case F 1 = F 2 = 1. Then F 43 = F 42 + F 41, and F 42 = F 41 + F 40. Now F 41 is being solved in the recursive sub-trees of both F 43 as well as F 42. Even though the total number of sub-problems is actually small (only 43 ...

  7. Bellman equation - Wikipedia

    en.wikipedia.org/wiki/Bellman_equation

    Let be the state at time .For a decision that begins at time 0, we take as given the initial state .At any time, the set of possible actions depends on the current state; we express this as (), where a particular action represents particular values for one or more control variables, and () is the set of actions available to be taken at state .

  8. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    Using this recursion, Bézout's integers s and t are given by s = s N and t = t N, where N + 1 is the step on which the algorithm terminates with r N+1 = 0. The validity of this approach can be shown by induction. Assume that the recursion formula is correct up to step k − 1 of the algorithm; in other words, assume that r j = s j a + t j b ...

  9. General recursive function - Wikipedia

    en.wikipedia.org/wiki/General_recursive_function

    The μ-recursive functions (or general recursive functions) are partial functions that take finite tuples of natural numbers and return a single natural number. They are the smallest class of partial functions that includes the initial functions and is closed under composition, primitive recursion, and the minimization operator μ .