enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Beam and Warming scheme - Wikipedia

    en.wikipedia.org/wiki/Beam_and_Warming_scheme

    In numerical mathematics, Beam and Warming scheme or Beam–Warming implicit scheme introduced in 1978 by Richard M. Beam and R. F. Warming, [1] [2] is a second order accurate implicit scheme, mainly used for solving non-linear hyperbolic equations. It is not used much nowadays.

  3. Symplectic integrator - Wikipedia

    en.wikipedia.org/wiki/Symplectic_integrator

    The Verlet method is the second-order integrator with = and coefficients =, =, = =. Since c 1 = 0 {\displaystyle c_{1}=0} , the algorithm above is symmetric in time. There are 3 steps to the algorithm, and step 1 and 3 are exactly the same, so the positive time version can be used for negative time.

  4. QUICK scheme - Wikipedia

    en.wikipedia.org/wiki/Quick_scheme

    In central differencing scheme and second order upwind scheme the first order derivative is included and the second order derivative is ignored. These schemes are therefore considered second order accurate where as QUICK does take the second order derivative into account, but ignores the third order derivative hence this is considered third ...

  5. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  6. Second-order cone programming - Wikipedia

    en.wikipedia.org/wiki/Second-order_cone_programming

    The "second-order cone" in SOCP arises from the constraints, which are equivalent to requiring the affine function (+, +) to lie in the second-order cone in +. [ 1 ] SOCPs can be solved by interior point methods [ 2 ] and in general, can be solved more efficiently than semidefinite programming (SDP) problems. [ 3 ]

  7. Upwind scheme - Wikipedia

    en.wikipedia.org/wiki/Upwind_scheme

    For the second-order upwind scheme, becomes the 3-point backward difference in equation and is defined as u x − = 3 u i n − 4 u i − 1 n + u i − 2 n 2 Δ x {\displaystyle u_{x}^{-}={\frac {3u_{i}^{n}-4u_{i-1}^{n}+u_{i-2}^{n}}{2\Delta x}}}

  8. Method of matched asymptotic expansions - Wikipedia

    en.wikipedia.org/wiki/Method_of_matched...

    In a large class of singularly perturbed problems, the domain may be divided into two or more subdomains. In one of these, often the largest, the solution is accurately approximated by an asymptotic series [2] found by treating the problem as a regular perturbation (i.e. by setting a relatively small parameter to zero).

  9. Lax–Wendroff method - Wikipedia

    en.wikipedia.org/wiki/Lax–Wendroff_method

    What follows is the Richtmyer two-step Lax–Wendroff method. The first step in the Richtmyer two-step Lax–Wendroff method calculates values for f(u(x, t)) at half time steps, t n + 1/2 and half grid points, x i + 1/2.