Search results
Results from the WOW.Com Content Network
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
The adjacent-vertex-distinguishing-total-chromatic number χ at (G) of a graph G is the fewest colors needed in an AVD-total-coloring of G. The following lower bound for the AVD-total chromatic number can be obtained from the definition of AVD-total-coloring: If a simple graph G has two adjacent vertices of maximum degree, then χ at ( G ) ≥ ...
This involves formulating discrete operators on graphs which are analogous to differential operators in calculus, such as graph Laplacians (or discrete Laplace operators) as discrete versions of the Laplacian, and using these operators to formulate differential equations, difference equations, or variational models on graphs which can be ...
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...
The empty graph E 3 (red) admits a 1-coloring; the complete graph K 3 (blue) admits a 3-coloring; the other graphs admit a 2-coloring. Main article: Chromatic polynomial The chromatic polynomial counts the number of ways a graph can be colored using some of a given number of colors.
In mathematics, an extreme point of a convex set in a real or complex vector space is a point in that does not lie in any open line segment joining two points of . In linear programming problems, an extreme point is also called vertex or corner point of S . {\displaystyle S.} [ 1 ]
The algorithm operates by building this tree one vertex at a time, from an arbitrary starting vertex, at each step adding the cheapest possible connection from the tree to another vertex. The algorithm was developed in 1930 by Czech mathematician VojtÄ›ch Jarník [ 1 ] and later rediscovered and republished by computer scientists Robert C. Prim ...
All non-isomorphic graphs on 3 vertices and their chromatic polynomials, clockwise from the top. The independent 3-set: k 3. An edge and a single vertex: k 2 (k – 1). The 3-path: k(k – 1) 2. The 3-clique: k(k – 1)(k – 2). The chromatic polynomial is a graph polynomial studied in algebraic graph theory, a branch of mathematics.