Search results
Results from the WOW.Com Content Network
In physics, the thermal equation of state is a mathematical expression of pressure P, temperature T, and, volume V.The thermal equation of state for ideal gases is the ideal gas law, expressed as PV=nRT (where R is the gas constant and n the amount of substance), while the thermal equation of state for solids is expressed as:
Some formulations for the Grüneisen parameter include: = = = = = ( ) where V is volume, and are the principal (i.e. per-mass) heat capacities at constant pressure and volume, E is energy, S is entropy, α is the volume thermal expansion coefficient, and are the adiabatic and isothermal bulk moduli, is the speed of sound in the medium ...
A number of materials contract on heating within certain temperature ranges; this is usually called negative thermal expansion, rather than "thermal contraction".For example, the coefficient of thermal expansion of water drops to zero as it is cooled to 3.983 °C (39.169 °F) and then becomes negative below this temperature; this means that water has a maximum density at this temperature, and ...
A temperature-corrected version that is used in computational mechanics has the form [6] [7]: 61 = [] +;:= where is the bulk speed of sound, is the initial density, is the current density, is Grüneisen's gamma at the reference state, = / is a linear Hugoniot slope coefficient, is the shock wave velocity, is the particle velocity, and is the internal energy per unit reference volume.
The two first partial derivatives of the vdW equation are | = = | = + = where = is the isothermal compressibility (a measure of the relative increase of volume from an increase of pressure, at constant temperature), and = is the coefficient of thermal expansion (a measure of the relative increase of volume from an increase of temperature, at ...
is pressure, temperature, volume, entropy, coefficient of thermal expansion, compressibility, heat capacity at constant volume, heat capacity at constant pressure. Maxwell's relations are a set of equations in thermodynamics which are derivable from the symmetry of second derivatives and from the definitions of the thermodynamic potentials .
where γ is the heat capacity ratio, α is the volumetric coefficient of thermal expansion, ρ = N/V is the particle density, and = (/) is the thermal pressure coefficient. In an extensive thermodynamic system, the application of statistical mechanics shows that the isothermal compressibility is also related to the relative size of fluctuations ...
where p is the pressure, V is volume, n is the polytropic index, and C is a constant. The polytropic process equation describes expansion and compression processes which include heat transfer. The polytropic process equation describes expansion and compression processes which include heat transfer.