enow.com Web Search

  1. Ads

    related to: properties of adjoint operators in math exercises

Search results

  1. Results from the WOW.Com Content Network
  2. Hermitian adjoint - Wikipedia

    en.wikipedia.org/wiki/Hermitian_adjoint

    For a conjugate-linear operator the definition of adjoint needs to be adjusted in order to compensate for the complex conjugation. An adjoint operator of the conjugate-linear operator A on a complex Hilbert space H is an conjugate-linear operator A ∗ : H → H with the property:

  3. Self-adjoint operator - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint_operator

    In practical terms, having an essentially self-adjoint operator is almost as good as having a self-adjoint operator, since we merely need to take the closure to obtain a self-adjoint operator. In physics, the term Hermitian refers to symmetric as well as self-adjoint operators alike. The subtle difference between the two is generally overlooked.

  4. Adjoint - Wikipedia

    en.wikipedia.org/wiki/Adjoint

    In mathematics, the term adjoint applies in several situations. Several of these share a similar formalism: if A is adjoint to B, then there is typically some formula of the type (Ax, y) = (x, By). Specifically, adjoint or adjunction may mean: Adjoint of a linear map, also called its transpose in case of matrices

  5. Linear Operators (book) - Wikipedia

    en.wikipedia.org/wiki/Linear_Operators_(book)

    Linear Operators is a three-volume textbook on the theory of linear operators, written by Nelson Dunford and Jacob T. Schwartz. The three volumes are (I) General Theory; (II) Spectral Theory, Self Adjoint Operators in Hilbert Space; and (III) Spectral Operators. The first volume was published in 1958, the second in 1963, and the third in 1971.

  6. Operator (physics) - Wikipedia

    en.wikipedia.org/wiki/Operator_(physics)

    Any observable, i.e., any quantity which can be measured in a physical experiment, should be associated with a self-adjoint linear operator. The operators must yield real eigenvalues, since they are values which may come up as the result of the experiment. Mathematically this means the operators must be Hermitian. [1]

  7. Adjoint functors - Wikipedia

    en.wikipedia.org/wiki/Adjoint_functors

    In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint.

  8. Hilbert–Schmidt theorem - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Schmidt_theorem

    In mathematical analysis, the Hilbert–Schmidt theorem, also known as the eigenfunction expansion theorem, is a fundamental result concerning compact, self-adjoint operators on Hilbert spaces. In the theory of partial differential equations , it is very useful in solving elliptic boundary value problems .

  9. Adjoint representation - Wikipedia

    en.wikipedia.org/wiki/Adjoint_representation

    The adjoint representation can also be defined for algebraic groups over any field. [clarification needed] The co-adjoint representation is the contragredient representation of the adjoint representation. Alexandre Kirillov observed that the orbit of any vector in a co-adjoint representation is a symplectic manifold.

  1. Ads

    related to: properties of adjoint operators in math exercises